Volatile anesthetics block intercellular communication between neonatal rat myocardial cells

J. M. Burt, D. C. Spray

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

The effects of halothane and ethrane on gap junction-mediated intercellular communication and on membrane excitability were examined in cultured neonatal rat cardiac myocytes using whole-cell voltage-clamp and current-clamp techniques. Excitability was maintained at doses of both anesthetics that reversibly abolished current flow through junctional membranes. The degree of reduction of junctional conductance was a steep function of the dose of anesthetic; complete block occurred at lower aqueous concentrations of halothane than ethrane. The time course for loss of communication was rapid; 90% reductionn of initial junctional conductance occurred in less than 15 seconds after exposure to 2 mM halothane or 4 mM ethrane. Recovery of junctional conductance and junctional permeability to intracellularly injected Lucifer yellow was rapid and complete on washout of the anesthetics. As junctional conductance was reduced by halothane or ethrane exposure, unitary conductance of the gap junctional channels remained constant at about 50 pS. Uncoupling by these anesthetics is thus attributable to a decrease in the number of conducting channels rather than to reduction of the channel's unitary conductance. The data are discussed with regard to the possible role of this intercellular communication pathway in the arrhythmias and alterations of conduction velocity and contractility produced by volatile anesthetics.

Original languageEnglish (US)
Pages (from-to)829-837
Number of pages9
JournalCirculation research
Volume65
Issue number3
DOIs
StatePublished - 1989
Externally publishedYes

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Volatile anesthetics block intercellular communication between neonatal rat myocardial cells'. Together they form a unique fingerprint.

Cite this