Use of isotope effects to deduce the chemical mechanism of fumarase

John S. Blanchard, W. W. Cleland

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

The pH variation of primary 18O and primary and secondary deuterium isotope effects has been determined by the use of the equilibrium perturbation method for the reaction catalyzed by fumarase. The primary 18O effect is 1.073 from the malate side at pH 5 (with an equilibrium 18O effect of 1.033) but decreases rapidly to near unity above pH 7. The primary deuterium isotope effect is near unity at pH 5 and 9 but is strongly inverse at neutral pH (0.915 from the malate side at pH 7, compared to the equilibrium isotope effect of 0.98). Secondary isotope effects with dideuterated substrates from (Brant malate side were 1.31 at pH 5-6 but decreased to a value of 1.08 at pH 9.6 (the equilibrium isotope effect is 1.45). These data are interpreted to mean that the 3R proton of malate is transferred to a group (probably carboxyl) on the enzyme with a fractionation factor relative to water of at least 1.2, to give a carbanion intermediate with an acicarboxylate structure which is tetrahedral at C-2 and trigonal at C-3. Carbon-oxygen bond cleavage accompanied by proton transfer from a group (probably imidazole) on the enzyme then gives water and fumarate. By quantitative analysis of the isotope effects, partition ratios for forward and reverse reaction of the E-malate, EH-carbanion, and EH-H2O-fumarate intermediates are calculated as a function of pH. The commitments to catalysis of malate, fumarate, water, and the proton on the enzyme are small at pH 5, and carbon-oxygen bond breaking is totally rate limiting. At neutral and high pH, however, the commitment factors (except that for water) are large, so that no 18O isotope effect is seen, and the other isotope effects are equilibrium ones, with the exact value seen depending on the ratio of forward and reverse commitments.

Original languageEnglish (US)
Pages (from-to)4506-4513
Number of pages8
JournalBiochemistry
Volume19
Issue number19
StatePublished - 1980
Externally publishedYes

Fingerprint

Fumarate Hydratase
Isotopes
Fumarates
Water
Deuterium
Protons
Enzymes
Carbon
Oxygen
Proton transfer
Fractionation
Catalysis
malic acid

ASJC Scopus subject areas

  • Biochemistry

Cite this

Use of isotope effects to deduce the chemical mechanism of fumarase. / Blanchard, John S.; Cleland, W. W.

In: Biochemistry, Vol. 19, No. 19, 1980, p. 4506-4513.

Research output: Contribution to journalArticle

Blanchard, John S. ; Cleland, W. W. / Use of isotope effects to deduce the chemical mechanism of fumarase. In: Biochemistry. 1980 ; Vol. 19, No. 19. pp. 4506-4513.
@article{5854ac0c35f24d78961bd992aaf3d6ff,
title = "Use of isotope effects to deduce the chemical mechanism of fumarase",
abstract = "The pH variation of primary 18O and primary and secondary deuterium isotope effects has been determined by the use of the equilibrium perturbation method for the reaction catalyzed by fumarase. The primary 18O effect is 1.073 from the malate side at pH 5 (with an equilibrium 18O effect of 1.033) but decreases rapidly to near unity above pH 7. The primary deuterium isotope effect is near unity at pH 5 and 9 but is strongly inverse at neutral pH (0.915 from the malate side at pH 7, compared to the equilibrium isotope effect of 0.98). Secondary isotope effects with dideuterated substrates from (Brant malate side were 1.31 at pH 5-6 but decreased to a value of 1.08 at pH 9.6 (the equilibrium isotope effect is 1.45). These data are interpreted to mean that the 3R proton of malate is transferred to a group (probably carboxyl) on the enzyme with a fractionation factor relative to water of at least 1.2, to give a carbanion intermediate with an acicarboxylate structure which is tetrahedral at C-2 and trigonal at C-3. Carbon-oxygen bond cleavage accompanied by proton transfer from a group (probably imidazole) on the enzyme then gives water and fumarate. By quantitative analysis of the isotope effects, partition ratios for forward and reverse reaction of the E-malate, EH-carbanion, and EH-H2O-fumarate intermediates are calculated as a function of pH. The commitments to catalysis of malate, fumarate, water, and the proton on the enzyme are small at pH 5, and carbon-oxygen bond breaking is totally rate limiting. At neutral and high pH, however, the commitment factors (except that for water) are large, so that no 18O isotope effect is seen, and the other isotope effects are equilibrium ones, with the exact value seen depending on the ratio of forward and reverse commitments.",
author = "Blanchard, {John S.} and Cleland, {W. W.}",
year = "1980",
language = "English (US)",
volume = "19",
pages = "4506--4513",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "19",

}

TY - JOUR

T1 - Use of isotope effects to deduce the chemical mechanism of fumarase

AU - Blanchard, John S.

AU - Cleland, W. W.

PY - 1980

Y1 - 1980

N2 - The pH variation of primary 18O and primary and secondary deuterium isotope effects has been determined by the use of the equilibrium perturbation method for the reaction catalyzed by fumarase. The primary 18O effect is 1.073 from the malate side at pH 5 (with an equilibrium 18O effect of 1.033) but decreases rapidly to near unity above pH 7. The primary deuterium isotope effect is near unity at pH 5 and 9 but is strongly inverse at neutral pH (0.915 from the malate side at pH 7, compared to the equilibrium isotope effect of 0.98). Secondary isotope effects with dideuterated substrates from (Brant malate side were 1.31 at pH 5-6 but decreased to a value of 1.08 at pH 9.6 (the equilibrium isotope effect is 1.45). These data are interpreted to mean that the 3R proton of malate is transferred to a group (probably carboxyl) on the enzyme with a fractionation factor relative to water of at least 1.2, to give a carbanion intermediate with an acicarboxylate structure which is tetrahedral at C-2 and trigonal at C-3. Carbon-oxygen bond cleavage accompanied by proton transfer from a group (probably imidazole) on the enzyme then gives water and fumarate. By quantitative analysis of the isotope effects, partition ratios for forward and reverse reaction of the E-malate, EH-carbanion, and EH-H2O-fumarate intermediates are calculated as a function of pH. The commitments to catalysis of malate, fumarate, water, and the proton on the enzyme are small at pH 5, and carbon-oxygen bond breaking is totally rate limiting. At neutral and high pH, however, the commitment factors (except that for water) are large, so that no 18O isotope effect is seen, and the other isotope effects are equilibrium ones, with the exact value seen depending on the ratio of forward and reverse commitments.

AB - The pH variation of primary 18O and primary and secondary deuterium isotope effects has been determined by the use of the equilibrium perturbation method for the reaction catalyzed by fumarase. The primary 18O effect is 1.073 from the malate side at pH 5 (with an equilibrium 18O effect of 1.033) but decreases rapidly to near unity above pH 7. The primary deuterium isotope effect is near unity at pH 5 and 9 but is strongly inverse at neutral pH (0.915 from the malate side at pH 7, compared to the equilibrium isotope effect of 0.98). Secondary isotope effects with dideuterated substrates from (Brant malate side were 1.31 at pH 5-6 but decreased to a value of 1.08 at pH 9.6 (the equilibrium isotope effect is 1.45). These data are interpreted to mean that the 3R proton of malate is transferred to a group (probably carboxyl) on the enzyme with a fractionation factor relative to water of at least 1.2, to give a carbanion intermediate with an acicarboxylate structure which is tetrahedral at C-2 and trigonal at C-3. Carbon-oxygen bond cleavage accompanied by proton transfer from a group (probably imidazole) on the enzyme then gives water and fumarate. By quantitative analysis of the isotope effects, partition ratios for forward and reverse reaction of the E-malate, EH-carbanion, and EH-H2O-fumarate intermediates are calculated as a function of pH. The commitments to catalysis of malate, fumarate, water, and the proton on the enzyme are small at pH 5, and carbon-oxygen bond breaking is totally rate limiting. At neutral and high pH, however, the commitment factors (except that for water) are large, so that no 18O isotope effect is seen, and the other isotope effects are equilibrium ones, with the exact value seen depending on the ratio of forward and reverse commitments.

UR - http://www.scopus.com/inward/record.url?scp=0019157471&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0019157471&partnerID=8YFLogxK

M3 - Article

C2 - 7407088

AN - SCOPUS:0019157471

VL - 19

SP - 4506

EP - 4513

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 19

ER -