Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2

Roger S.Y. Foo, Lennard K.W. Chan, Richard N. Kitsis, Martin R. Bennett

Research output: Contribution to journalArticle

63 Scopus citations

Abstract

Current evidence shows that cardiomyocyte apoptosis plays a central role in the pathogenesis of myocardial disease and that reactive oxygen species is critically responsible for mediating cardiomyocyte apoptosis in both ischemia-reperfusion injury and dilated cardiomyopathy. ARC (Apoptosis Repressor with Caspase recruitment domain) is an anti-apoptotic protein that is found abundantly in terminally differentiated cells such as cardiomyocytes. The ARC knock-out mouse developed larger infarct in response to ischemia-reperfusion and transitioned more rapidly and severely to dilated cardiomyopathy following aortic constriction. In addition, ARC protein levels are decreased in human dilated cardiomyopathy and when cardiomyocytes are exposed to oxidative stress in vitro, but the mechanisms regulating ARC protein levels are not known. Here we show that degradation of ARC is dependent on the p53-induced ubiquitin E3 ligase, MDM2. Oxidative stress reduced ARC levels and up-regulated MDM2. MDM2 directly accelerated ARC protein turnover via ubiquitination and proteasomal-dependent degradation. This activity requires a functioning MDM2 ring finger domain because the MDM2C464A mutant was unable to direct ARC degradation. Furthermore, ARC degradation requires MDM2, because MDM2 knock-out fibroblasts showed defective ARC degradation that could be rescued by MDM2. Proteasomal inhibitors rescued both MDM2 and H2O 2-induced degradation of ARC and inhibited cardiomyocyte apoptosis. Dilated cardiomyopathic hearts from mice that have undergone transverse aortic banding have increased MDM2 levels associated with decreased ARC levels. We conclude that MDM2 is a critical regulator of ARC levels in cardiomyocytes. Prevention of MDM2-induced degradation of ARC represents a potential therapeutic target to prevent cardiomyocyte apoptosis.

Original languageEnglish (US)
Pages (from-to)5529-5535
Number of pages7
JournalJournal of Biological Chemistry
Volume282
Issue number8
DOIs
StatePublished - Feb 23 2007

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2'. Together they form a unique fingerprint.

  • Cite this