TY - JOUR
T1 - Two types of collecting duct mitochondria-rich (intercalated) cells
T2 - Lectin and band 3 cytochemistry
AU - Schuster, V. L.
AU - Bonsib, S. M.
AU - Jennings, M. L.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1986
Y1 - 1986
N2 - Anion exchange plays an important role in renal ion transport and acidification. To further understand the molecular nature of renal epithelial anion exchange, we used a monoclonal antibody to the membrane domain (52 kDa) of human erythrocyte band 3 protein to immunocytochemically search for this polypeptide in the rabbit kidney. In cryostat sections, a subpopulation of cells in the cortical and outer medullary collecting tubules showed immunoreactivity; labeling was restricted to the basolateral membrane. Proximal tubules and thick and thin limbs of Henle showed no immunoreactivity. Approximately 11% of cells in the cortical, but 43% of cells in the medullary, collecting tubule were positive for band 3. To determine the type of cells that were band 3 positive, mitochondria-rich (intercalated) cells were identified by their positive histochemical staining for succinic dehydrogenase activity and by their ability to bind peanut lectin at the apical membrane. In the cortical collecting tubule, the majority of mitochondria-rich cells bound peanut lectin but were band 3 negative; the remainder were band 3 positive but lectin negative. This distribution was reversed in the inner stripe of the outer medulla: all mitochondria-rich cells were band 3 positive and lectin negative. Thus mitochondria-rich cells are of at least two types, each of which has a distinct axial distribution pattern. Given available information about in vitro HCO3 transport properties of rabbit collecting tubules, it is likely that the lectin-positive, band 3-negative mitochondria-rich cells secrete HCO3, whereas the lectin-negative, band 3-positive cells reabsorb HCO3 (secrete H).
AB - Anion exchange plays an important role in renal ion transport and acidification. To further understand the molecular nature of renal epithelial anion exchange, we used a monoclonal antibody to the membrane domain (52 kDa) of human erythrocyte band 3 protein to immunocytochemically search for this polypeptide in the rabbit kidney. In cryostat sections, a subpopulation of cells in the cortical and outer medullary collecting tubules showed immunoreactivity; labeling was restricted to the basolateral membrane. Proximal tubules and thick and thin limbs of Henle showed no immunoreactivity. Approximately 11% of cells in the cortical, but 43% of cells in the medullary, collecting tubule were positive for band 3. To determine the type of cells that were band 3 positive, mitochondria-rich (intercalated) cells were identified by their positive histochemical staining for succinic dehydrogenase activity and by their ability to bind peanut lectin at the apical membrane. In the cortical collecting tubule, the majority of mitochondria-rich cells bound peanut lectin but were band 3 negative; the remainder were band 3 positive but lectin negative. This distribution was reversed in the inner stripe of the outer medulla: all mitochondria-rich cells were band 3 positive and lectin negative. Thus mitochondria-rich cells are of at least two types, each of which has a distinct axial distribution pattern. Given available information about in vitro HCO3 transport properties of rabbit collecting tubules, it is likely that the lectin-positive, band 3-negative mitochondria-rich cells secrete HCO3, whereas the lectin-negative, band 3-positive cells reabsorb HCO3 (secrete H).
UR - http://www.scopus.com/inward/record.url?scp=0022489887&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022489887&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.1986.251.3.c347
DO - 10.1152/ajpcell.1986.251.3.c347
M3 - Article
C2 - 3529979
AN - SCOPUS:0022489887
SN - 0363-6143
VL - 251
SP - C347-C355
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 3 (20/3)
ER -