Three-chromophore fret microscopy to analyze multiprotein interactions in living cells

Emilia Galperin, Vladislav V. Verkhusha, Alexander Sorkin

Research output: Contribution to journalArticlepeer-review

169 Scopus citations

Abstract

Nearly every major process in a cell is carried out by assemblies of multiple dynamically interacting protein molecules. To study multi-protein interactions within such molecular machineries, we have developed a fluorescence microscopy method called three-chromophore fluorescence resonance energy transfer (3-FRET). This method allows analysis of three mutually dependent energy transfer processes between the fluorescent labels, such as cyan, yellow and monomeric red fluorescent proteins. Here, we describe both theoretical and experimental approaches that discriminate the parallel versus the sequential energy transfer processes in the 3-FRET system. These approaches were established in vitro and in cultured mammalian cells, using chimeric proteins consisting of two or three fluorescent proteins linked together. The 3-FRET microscopy was further applied to the analysis of three-protein interactions in the constitutive and activation-dependent complexes in single endosomal compartments. These data highlight the potential of 3-FRET microscopy in studies of spatial and temporal regulation of signaling processes in living cells.

Original languageEnglish (US)
Pages (from-to)209-217
Number of pages9
JournalNature Methods
Volume1
Issue number3
DOIs
StatePublished - Dec 2004
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Three-chromophore fret microscopy to analyze multiprotein interactions in living cells'. Together they form a unique fingerprint.

Cite this