Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells

Kang Cheng, Antonia Follenzi, Manju Surana, Norman Fleischer, Sanjeev Gupta

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Introduction. The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. Methods. We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). Results: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. Conclusions: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells.

Original languageEnglish (US)
Article number6
JournalStem Cell Research and Therapy
Volume1
Issue number1
DOIs
StatePublished - 2010

Fingerprint

Stem Cells
Stem cells
Endocrine Cells
Insulin
Pancreas
Gene therapy
Cell Adhesion Molecules
human TERT protein
Sorting
Pluripotent Stem Cells
Homeobox Genes
Cell- and Tissue-Based Therapy
Transcription Factors
Transgenes
Genetic Therapy
Switches
Availability
Hormones
Uncertainty
Catalytic Domain

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Molecular Medicine
  • Cell Biology
  • Medicine (miscellaneous)

Cite this

Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells. / Cheng, Kang; Follenzi, Antonia; Surana, Manju; Fleischer, Norman; Gupta, Sanjeev.

In: Stem Cell Research and Therapy, Vol. 1, No. 1, 6, 2010.

Research output: Contribution to journalArticle

@article{954822c582ed4cdbabf87dce40c4aa7c,
title = "Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells",
abstract = "Introduction. The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. Methods. We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). Results: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. Conclusions: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells.",
author = "Kang Cheng and Antonia Follenzi and Manju Surana and Norman Fleischer and Sanjeev Gupta",
year = "2010",
doi = "10.1186/scrt6",
language = "English (US)",
volume = "1",
journal = "Stem Cell Research and Therapy",
issn = "1757-6512",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells

AU - Cheng, Kang

AU - Follenzi, Antonia

AU - Surana, Manju

AU - Fleischer, Norman

AU - Gupta, Sanjeev

PY - 2010

Y1 - 2010

N2 - Introduction. The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. Methods. We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). Results: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. Conclusions: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells.

AB - Introduction. The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. Methods. We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). Results: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. Conclusions: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells.

UR - http://www.scopus.com/inward/record.url?scp=79954498402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79954498402&partnerID=8YFLogxK

U2 - 10.1186/scrt6

DO - 10.1186/scrt6

M3 - Article

C2 - 20504287

AN - SCOPUS:79954498402

VL - 1

JO - Stem Cell Research and Therapy

JF - Stem Cell Research and Therapy

SN - 1757-6512

IS - 1

M1 - 6

ER -