TY - JOUR
T1 - Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFα expression in human fetal astrocytes
AU - Hua, Liwei L.
AU - Zhao, Meng Liang
AU - Cosenza, Melissa
AU - Kim, Mee Ohk
AU - Huang, Huan
AU - Tanowitz, Herbert B.
AU - Brosnan, Celia F.
AU - Lee, Sunhee C.
N1 - Funding Information:
The authors thank Einstein Fetal Tissue Repository for supplying tissue and Wa Shen for preparing excellent tissue culture. We also thank Drs. Moon L. Shin, Gareth John, Judy Liu, and Julie Simpson for helpful discussions, and Dr. Qiusheng Si for assisting with the figure preparations. This study was supported by MH55477, AI44641, and NMMS RG2771 to SCL and NS11920 to CFB.
PY - 2002
Y1 - 2002
N2 - Astrocytes are important sources of proinflammatory mediators such as iNOS and TNFα in the diseased central nervous system. In previous studies, we showed that the cytokine IL-1 plays a critical role in the activation of human astrocytes to express TNFα and the inducible form of nitric oxide synthase (iNOS). In the present study, we have addressed the role of the MAP-kinase pathway in the signaling events leading to the induction of these genes. Treatment with SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), potently inhibited IL-1-mediated induction of iNOS and TNFα in cultures of human fetal astrocytes. In contrast, PD98059, an upstream inhibitor of the extracellular regulated kinase (ERK)1/2 pathway, had little or no effect. Interestingly, SB203580 reduced the mRNA expression for iNOS, TNFα, and IL-6, indicating inhibition prior to translation. Transfection of astrocytes with a dominant-negative Jun-NH2-terminal kinase (JNK) construct also reduced iNOS expression. Western blot analysis showed phosphorylated p38 and JNK in IL-1-activated astrocytes, and phosphorylated ERK in both resting and activated cells. Electrophoretic mobility shift assay (EMSA) showed that IL-1 induced NF-κB and AP-1 DNA complex formation in astrocytes, and that SB203580 inhibited AP-1 complex formation. Taken together, these results demonstrate the differential roles played by the three MAP kinases in human astrocyte inflammatory gene activation and point to a crucial function of p38 and JNK MAP kinases in IL-1-mediated astrocyte activation.
AB - Astrocytes are important sources of proinflammatory mediators such as iNOS and TNFα in the diseased central nervous system. In previous studies, we showed that the cytokine IL-1 plays a critical role in the activation of human astrocytes to express TNFα and the inducible form of nitric oxide synthase (iNOS). In the present study, we have addressed the role of the MAP-kinase pathway in the signaling events leading to the induction of these genes. Treatment with SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), potently inhibited IL-1-mediated induction of iNOS and TNFα in cultures of human fetal astrocytes. In contrast, PD98059, an upstream inhibitor of the extracellular regulated kinase (ERK)1/2 pathway, had little or no effect. Interestingly, SB203580 reduced the mRNA expression for iNOS, TNFα, and IL-6, indicating inhibition prior to translation. Transfection of astrocytes with a dominant-negative Jun-NH2-terminal kinase (JNK) construct also reduced iNOS expression. Western blot analysis showed phosphorylated p38 and JNK in IL-1-activated astrocytes, and phosphorylated ERK in both resting and activated cells. Electrophoretic mobility shift assay (EMSA) showed that IL-1 induced NF-κB and AP-1 DNA complex formation in astrocytes, and that SB203580 inhibited AP-1 complex formation. Taken together, these results demonstrate the differential roles played by the three MAP kinases in human astrocyte inflammatory gene activation and point to a crucial function of p38 and JNK MAP kinases in IL-1-mediated astrocyte activation.
KW - Astrocytes
KW - Kinase
KW - Nitric oxide synthase
UR - http://www.scopus.com/inward/record.url?scp=0036096284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036096284&partnerID=8YFLogxK
U2 - 10.1016/S0165-5728(02)00055-3
DO - 10.1016/S0165-5728(02)00055-3
M3 - Article
C2 - 12020969
AN - SCOPUS:0036096284
SN - 0165-5728
VL - 126
SP - 180
EP - 189
JO - Advances in Neuroimmunology
JF - Advances in Neuroimmunology
IS - 1-2
ER -