Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells.

J. L. Salisbury, John S. Condeelis, P. Satir

Research output: Contribution to journalArticle

217 Citations (Scopus)

Abstract

Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42-kdalton component that comigrates with rabbit muscle actin and a 18.5-kdalton minor component that comigrates with calmodulin as well as 110-, 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.

Original languageEnglish (US)
Pages (from-to)132-141
Number of pages10
JournalJournal of Cell Biology
Volume87
Issue number1
StatePublished - Oct 1980

Fingerprint

Coated Vesicles
Calmodulin
Endocytosis
Actin Cytoskeleton
Clathrin
Ligands
Trifluoperazine
Immunoglobulin M
Actins
Cell Membrane
Pharmaceutical Preparations
Myosin Subfragments
Cell Surface Receptors
Ferritins
Cluster Analysis
Polyacrylamide Gel Electrophoresis
Anti-Idiotypic Antibodies
Rabbits
Muscles
Peptides

ASJC Scopus subject areas

  • Cell Biology

Cite this

Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. / Salisbury, J. L.; Condeelis, John S.; Satir, P.

In: Journal of Cell Biology, Vol. 87, No. 1, 10.1980, p. 132-141.

Research output: Contribution to journalArticle

@article{40b356709ed94573bf54bf14bda72766,
title = "Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells.",
abstract = "Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42-kdalton component that comigrates with rabbit muscle actin and a 18.5-kdalton minor component that comigrates with calmodulin as well as 110-, 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.",
author = "Salisbury, {J. L.} and Condeelis, {John S.} and P. Satir",
year = "1980",
month = "10",
language = "English (US)",
volume = "87",
pages = "132--141",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "1",

}

TY - JOUR

T1 - Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells.

AU - Salisbury, J. L.

AU - Condeelis, John S.

AU - Satir, P.

PY - 1980/10

Y1 - 1980/10

N2 - Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42-kdalton component that comigrates with rabbit muscle actin and a 18.5-kdalton minor component that comigrates with calmodulin as well as 110-, 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.

AB - Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42-kdalton component that comigrates with rabbit muscle actin and a 18.5-kdalton minor component that comigrates with calmodulin as well as 110-, 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.

UR - http://www.scopus.com/inward/record.url?scp=0019068962&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0019068962&partnerID=8YFLogxK

M3 - Article

C2 - 6968316

AN - SCOPUS:0019068962

VL - 87

SP - 132

EP - 141

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 1

ER -