Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling

Kurt Z. Haas, Ellen F. Sperber, Lisa A. Opanashuk, Patric K. Stanton, Solomon L. Moshe

Research output: Contribution to journalArticle

131 Citations (Scopus)

Abstract

Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early developmental resistance to seizure-induced hippocampal damage, we compared the effects of kainic acid (KA)-induced status epilepticus and amygdala kindling on hippocampal dentate gyrus anatomy and electrophysiology, in immature (16 day old) and adult rats. In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57%) in separate rats. Two weeks following the last kindled seizure, some, but significantly less, CA3c pyramidal cell loss was observed (-26%). Both KA status epilepticus and kindling induced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus. In hippocampal slices from adult rats, paired-pulse stimulation of perforant path axons revealed a persistent enhancement of dentate granule-cell inhibition following KA status epilepticus or kindling. While seizures induced by KA or kindling in 16-day-old rats were typically more severe than in adults, the immature hippocampus exhibited markedly less KA-induced cell loss (-22%), no kindling-induced loss, no detectable synaptic rearrangement, and no change in dentate inhibition. These results demonstrate that, in immature rats, neither severe KA-induced seizures nor repeated kindled seizures produce the kind of hippocampal damage and changes associated with even less severe seizures in adults. The lesser magnitude of seizure-induced hippocampal alterations in immature rats may explain their greater resistance to long-term effects of seizures on neuronal function, as well as future seizure susceptibility. Conversely, hippocampal neuron loss and altered synaptic physiology in adults may contribute to increased sensitivity to epileptogenic stimuli, spontaneous seizures, and behavioral deficits.

Original languageEnglish (US)
Pages (from-to)615-625
Number of pages11
JournalHippocampus
Volume11
Issue number6
DOIs
StatePublished - 2001

Fingerprint

Status Epilepticus
Hippocampus
Seizures
Kainic Acid
Pyramidal Cells
Dentate Gyrus
Perforant Pathway
Neurons
Parahippocampal Gyrus
Electrophysiology
Amygdala
Silver
Axons
Anatomy

Keywords

  • CA1
  • CA3
  • Dentate gyrus
  • Development
  • Epilepsy
  • Kainic acid
  • Seizures

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. / Haas, Kurt Z.; Sperber, Ellen F.; Opanashuk, Lisa A.; Stanton, Patric K.; Moshe, Solomon L.

In: Hippocampus, Vol. 11, No. 6, 2001, p. 615-625.

Research output: Contribution to journalArticle

Haas, Kurt Z. ; Sperber, Ellen F. ; Opanashuk, Lisa A. ; Stanton, Patric K. ; Moshe, Solomon L. / Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. In: Hippocampus. 2001 ; Vol. 11, No. 6. pp. 615-625.
@article{af3e2ef08f1f470b890ef660981f0e19,
title = "Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling",
abstract = "Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early developmental resistance to seizure-induced hippocampal damage, we compared the effects of kainic acid (KA)-induced status epilepticus and amygdala kindling on hippocampal dentate gyrus anatomy and electrophysiology, in immature (16 day old) and adult rats. In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57{\%}) in separate rats. Two weeks following the last kindled seizure, some, but significantly less, CA3c pyramidal cell loss was observed (-26{\%}). Both KA status epilepticus and kindling induced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus. In hippocampal slices from adult rats, paired-pulse stimulation of perforant path axons revealed a persistent enhancement of dentate granule-cell inhibition following KA status epilepticus or kindling. While seizures induced by KA or kindling in 16-day-old rats were typically more severe than in adults, the immature hippocampus exhibited markedly less KA-induced cell loss (-22{\%}), no kindling-induced loss, no detectable synaptic rearrangement, and no change in dentate inhibition. These results demonstrate that, in immature rats, neither severe KA-induced seizures nor repeated kindled seizures produce the kind of hippocampal damage and changes associated with even less severe seizures in adults. The lesser magnitude of seizure-induced hippocampal alterations in immature rats may explain their greater resistance to long-term effects of seizures on neuronal function, as well as future seizure susceptibility. Conversely, hippocampal neuron loss and altered synaptic physiology in adults may contribute to increased sensitivity to epileptogenic stimuli, spontaneous seizures, and behavioral deficits.",
keywords = "CA1, CA3, Dentate gyrus, Development, Epilepsy, Kainic acid, Seizures",
author = "Haas, {Kurt Z.} and Sperber, {Ellen F.} and Opanashuk, {Lisa A.} and Stanton, {Patric K.} and Moshe, {Solomon L.}",
year = "2001",
doi = "10.1002/hipo.1076",
language = "English (US)",
volume = "11",
pages = "615--625",
journal = "Hippocampus",
issn = "1050-9631",
publisher = "Wiley-Liss Inc.",
number = "6",

}

TY - JOUR

T1 - Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling

AU - Haas, Kurt Z.

AU - Sperber, Ellen F.

AU - Opanashuk, Lisa A.

AU - Stanton, Patric K.

AU - Moshe, Solomon L.

PY - 2001

Y1 - 2001

N2 - Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early developmental resistance to seizure-induced hippocampal damage, we compared the effects of kainic acid (KA)-induced status epilepticus and amygdala kindling on hippocampal dentate gyrus anatomy and electrophysiology, in immature (16 day old) and adult rats. In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57%) in separate rats. Two weeks following the last kindled seizure, some, but significantly less, CA3c pyramidal cell loss was observed (-26%). Both KA status epilepticus and kindling induced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus. In hippocampal slices from adult rats, paired-pulse stimulation of perforant path axons revealed a persistent enhancement of dentate granule-cell inhibition following KA status epilepticus or kindling. While seizures induced by KA or kindling in 16-day-old rats were typically more severe than in adults, the immature hippocampus exhibited markedly less KA-induced cell loss (-22%), no kindling-induced loss, no detectable synaptic rearrangement, and no change in dentate inhibition. These results demonstrate that, in immature rats, neither severe KA-induced seizures nor repeated kindled seizures produce the kind of hippocampal damage and changes associated with even less severe seizures in adults. The lesser magnitude of seizure-induced hippocampal alterations in immature rats may explain their greater resistance to long-term effects of seizures on neuronal function, as well as future seizure susceptibility. Conversely, hippocampal neuron loss and altered synaptic physiology in adults may contribute to increased sensitivity to epileptogenic stimuli, spontaneous seizures, and behavioral deficits.

AB - Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early developmental resistance to seizure-induced hippocampal damage, we compared the effects of kainic acid (KA)-induced status epilepticus and amygdala kindling on hippocampal dentate gyrus anatomy and electrophysiology, in immature (16 day old) and adult rats. In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57%) in separate rats. Two weeks following the last kindled seizure, some, but significantly less, CA3c pyramidal cell loss was observed (-26%). Both KA status epilepticus and kindling induced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus. In hippocampal slices from adult rats, paired-pulse stimulation of perforant path axons revealed a persistent enhancement of dentate granule-cell inhibition following KA status epilepticus or kindling. While seizures induced by KA or kindling in 16-day-old rats were typically more severe than in adults, the immature hippocampus exhibited markedly less KA-induced cell loss (-22%), no kindling-induced loss, no detectable synaptic rearrangement, and no change in dentate inhibition. These results demonstrate that, in immature rats, neither severe KA-induced seizures nor repeated kindled seizures produce the kind of hippocampal damage and changes associated with even less severe seizures in adults. The lesser magnitude of seizure-induced hippocampal alterations in immature rats may explain their greater resistance to long-term effects of seizures on neuronal function, as well as future seizure susceptibility. Conversely, hippocampal neuron loss and altered synaptic physiology in adults may contribute to increased sensitivity to epileptogenic stimuli, spontaneous seizures, and behavioral deficits.

KW - CA1

KW - CA3

KW - Dentate gyrus

KW - Development

KW - Epilepsy

KW - Kainic acid

KW - Seizures

UR - http://www.scopus.com/inward/record.url?scp=0035689157&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035689157&partnerID=8YFLogxK

U2 - 10.1002/hipo.1076

DO - 10.1002/hipo.1076

M3 - Article

C2 - 11811655

AN - SCOPUS:0035689157

VL - 11

SP - 615

EP - 625

JO - Hippocampus

JF - Hippocampus

SN - 1050-9631

IS - 6

ER -