Reductive hydroxyethylation of the α-amino groups of amidated hemoglobin S

A. Seetharama Acharya, Leslie G. Sussman, Ramnath Seetharam

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Val-6(β) of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6(β) in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(β), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43(β) and hydroxyethylation of α-amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43(β) by amidation with glycine ethyl ester did not influence the reactivity of the α-amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.

Original languageEnglish (US)
Pages (from-to)215-225
Number of pages11
JournalJournal of Protein Chemistry
Volume4
Issue number4
DOIs
StatePublished - Aug 1985
Externally publishedYes

Fingerprint

Sickle Hemoglobin
Hemoglobin
Solubility
Chemical modification
Polymerization
Hemoglobin A
Proteins
Fetal Hemoglobin
Mutation

Keywords

  • amidation
  • hemoglobin S
  • hydroxyethylation
  • perturbation of quinary interactions

ASJC Scopus subject areas

  • Biochemistry

Cite this

Reductive hydroxyethylation of the α-amino groups of amidated hemoglobin S. / Acharya, A. Seetharama; Sussman, Leslie G.; Seetharam, Ramnath.

In: Journal of Protein Chemistry, Vol. 4, No. 4, 08.1985, p. 215-225.

Research output: Contribution to journalArticle

Acharya, A. Seetharama ; Sussman, Leslie G. ; Seetharam, Ramnath. / Reductive hydroxyethylation of the α-amino groups of amidated hemoglobin S. In: Journal of Protein Chemistry. 1985 ; Vol. 4, No. 4. pp. 215-225.
@article{adf83663fcda4c038a89e192b778c019,
title = "Reductive hydroxyethylation of the α-amino groups of amidated hemoglobin S",
abstract = "Val-6(β) of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6(β) in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(β), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43(β) and hydroxyethylation of α-amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43(β) by amidation with glycine ethyl ester did not influence the reactivity of the α-amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.",
keywords = "amidation, hemoglobin S, hydroxyethylation, perturbation of quinary interactions",
author = "Acharya, {A. Seetharama} and Sussman, {Leslie G.} and Ramnath Seetharam",
year = "1985",
month = "8",
doi = "10.1007/BF01025299",
language = "English (US)",
volume = "4",
pages = "215--225",
journal = "Protein Journal",
issn = "1572-3887",
publisher = "Springer New York",
number = "4",

}

TY - JOUR

T1 - Reductive hydroxyethylation of the α-amino groups of amidated hemoglobin S

AU - Acharya, A. Seetharama

AU - Sussman, Leslie G.

AU - Seetharam, Ramnath

PY - 1985/8

Y1 - 1985/8

N2 - Val-6(β) of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6(β) in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(β), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43(β) and hydroxyethylation of α-amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43(β) by amidation with glycine ethyl ester did not influence the reactivity of the α-amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.

AB - Val-6(β) of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6(β) in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(β), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43(β) and hydroxyethylation of α-amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43(β) by amidation with glycine ethyl ester did not influence the reactivity of the α-amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.

KW - amidation

KW - hemoglobin S

KW - hydroxyethylation

KW - perturbation of quinary interactions

UR - http://www.scopus.com/inward/record.url?scp=0022301435&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022301435&partnerID=8YFLogxK

U2 - 10.1007/BF01025299

DO - 10.1007/BF01025299

M3 - Article

AN - SCOPUS:0022301435

VL - 4

SP - 215

EP - 225

JO - Protein Journal

JF - Protein Journal

SN - 1572-3887

IS - 4

ER -