Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5′-nucleotidase (5′-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose-and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.

Original languageEnglish (US)
Pages (from-to)140-145
Number of pages6
JournalInternational Journal of Impotence Research
Volume27
Issue number4
DOIs
StatePublished - Jul 16 2015

Fingerprint

glutaminyl-arginyl-phenylalanyl-seryl-arginine
Adenosine
Smooth Muscle Myocytes
Sickle Cell Anemia
Priapism
Up-Regulation
Smooth Muscle
Enzymes
5'-Nucleotidase
Cell Hypoxia
Messenger RNA
Small Interfering RNA

ASJC Scopus subject areas

  • Urology

Cite this

@article{32d8803ae4eb49eb8c263cfd77755bfe,
title = "Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice",
abstract = "The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5′-nucleotidase (5′-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose-and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.",
author = "S. Fu and Kelvin Davies",
year = "2015",
month = "7",
day = "16",
doi = "10.1038/ijir.2015.5",
language = "English (US)",
volume = "27",
pages = "140--145",
journal = "International Journal of Impotence Research",
issn = "0955-9930",
publisher = "Nature Publishing Group",
number = "4",

}

TY - JOUR

T1 - Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice

AU - Fu, S.

AU - Davies, Kelvin

PY - 2015/7/16

Y1 - 2015/7/16

N2 - The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5′-nucleotidase (5′-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose-and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.

AB - The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5′-nucleotidase (5′-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose-and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.

UR - http://www.scopus.com/inward/record.url?scp=84937164963&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937164963&partnerID=8YFLogxK

U2 - 10.1038/ijir.2015.5

DO - 10.1038/ijir.2015.5

M3 - Article

C2 - 25833166

AN - SCOPUS:84937164963

VL - 27

SP - 140

EP - 145

JO - International Journal of Impotence Research

JF - International Journal of Impotence Research

SN - 0955-9930

IS - 4

ER -