Mitochondrial genome linearization is a causative factor for cardiomyopathy in Mice and Drosophila

Yun Chen, Megan Sparks, Poonam Bhandari, Scot J. Matkovich, Gerald W. Dorn

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations

Abstract

Aims: Mitofusin (Mfn)2 redundantly promotes mitochondrial outer membrane tethering and organelle fusion with Mfn1, and uniquely functions as the mitochondrial receptor for Parkin during PTEN-induced putative kinase 1 (PINK1)-Parkin-mediated mitophagy. Selective deletion of Mfn2 with retention of Mfn1 preserves mitochondrial fusion while rendering damaged mitochondria resistant to normal quality control culling mechanisms. Consequently, neuron and cardiomyocyte-specific Mfn2 gene ablation is associated with accumulation of damaged mitochondria and organ dysfunction. Here, we determined how mitochondrial DNA (mtDNA) damage contributes to cardiomyopathy in Mfn2-deficient hearts. Results: RNA sequencing of Mfn2-deficient hearts revealed increased expression of some nuclear-encoded mitochondrial genes, but mitochondrial-encoded transcripts were not upregulated in parallel and mtDNA content was decreased. Ultra-deep sequencing of mtDNA showed no increase in single nucleotide mutations, but copy number variations representing insertion-deletion (in-del) mutations were induced over time by cardiomyocyte-specific Mfn2 deficiency. Double-strand mtDNA breaks in the form of in-dels were confirmed by polymerase chain reaction, and in the form of linear mitochondrial genomes were identified by southern blot analysis. Linearization of Drosophila cardiomyocyte mtDNA using conditional cardiomyocyte-specific expression of mitochondrial targeted XhoI recapitulated the cardiomyopathy of Mfn2-deficient mouse hearts. Innovation: This is the first description of mitochondrial genome linearization as a causative factor in cardiomyopathy. Conclusion: One of the consequences of interrupting mitochondrial culling by the PINK1-Mfn2-Parkin mechanism is an increase in mtDNA double-stranded breaks, which adversely impact mitochondrial function and DNA replication. Antioxid. Redox Signal. 21, 1949-1959.

Original languageEnglish (US)
Pages (from-to)1949-1959
Number of pages11
JournalAntioxidants and Redox Signaling
Volume21
Issue number14
DOIs
StatePublished - Nov 10 2014
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Mitochondrial genome linearization is a causative factor for cardiomyopathy in Mice and Drosophila'. Together they form a unique fingerprint.

Cite this