Manganese and its role in Parkinson's disease: From transport to neuropathology

Michael Aschner, Keith M. Erikson, Elena Herrero Hernández, Ronald Tjalkens

Research output: Contribution to journalReview article

177 Scopus citations

Abstract

The purpose of this review is to highlight recent advances in the neuropathology associated with Mn exposures. We commence with a discussion on occupational manganism and clinical aspects of the disorder. This is followed by novel considerations on Mn transport (see also chapter by Yokel, this volume), advancing new hypotheses on the involvement of several transporters in Mn entry into the brain. This is followed by a brief description of the effects of Mn on neurotransmitter systems that are putative modulators of dopamine (DA) biology (the primary target of Mn neurotoxicity), as well as its effects on mitochondrial dysfunction and disruption of cellular energy metabolism. Next, we discuss inflammatory activation of glia in neuronal injury and how disruption of synaptic transmission and glial-neuronal communication may serve as underlying mechanisms of Mn-induced neurodegeneration commensurate with the cross-talk between glia and neurons. We conclude with a discussion on therapeutic aspects of Mn exposure. Emphasis is directed at treatment modalities and the utility of chelators in attenuating the neurodegenerative sequelae of exposure to Mn. For additional reading on several topics inherent to this review as well as others, the reader may wish to consult Aschner and Dorman (Toxicological Review 25:147-154, 2007) and Bowman et al. (Metals and neurodegeneration, 2009).

Original languageEnglish (US)
Pages (from-to)252-266
Number of pages15
JournalNeuroMolecular Medicine
Volume11
Issue number4
DOIs
StatePublished - Dec 1 2009
Externally publishedYes

Keywords

  • GABA
  • Glia
  • Glutamate
  • MRI
  • Manganese
  • Neuroinflammation
  • Parkinson's

ASJC Scopus subject areas

  • Molecular Medicine
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Manganese and its role in Parkinson's disease: From transport to neuropathology'. Together they form a unique fingerprint.

  • Cite this