Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission

Maria Guadalupe Martinez, Margaret Kielian

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Alphaviruses are highly organized enveloped RNA viruses with an internal nucleocapsid surrounded by a membrane containing the E2 and E1 transmembrane proteins. Alphavirus budding takes place at the plasma membrane and requires the interaction of the cytoplasmic domain of E2 with the capsid protein. Here we used WT alphaviruses and Sindbis virus in which E2 was fused to a fluorescent protein to characterize virus exit from host cells. Our results show that alphavirus infection induced striking modifications of the host cell cytoskeleton and resulted in the formation of stable intercellular extensions that emanated exclusively from the infected cell. The intercellular extensions were long (> 10 μM), contained actin and tubulin, and formed flattened contacts with neighboring cells, but did not mediate membrane or cytoplasmic continuity between cells. Receptor down-regulation studies indicated that formation of stable extensions did not require the virus receptor, and that extensions promoted cell-to-cell virus transmission to receptor-depleted cells. Virus mutant experiments demonstrated that formation of extensions required the E2-capsid interaction but not active particle budding, while intercellular transmission of infection required the production of fusion-active virus particles. Protein expression studies showed that even in the absence of virus infection, the viral structural proteins alone induced intercellular extensions, and that these extensions were preferentially targeted to non-expressing cells. Together, our results identify a mechanism for alphavirus cell-to-cell transmission and define the key viral protein interactions that it requires.

Original languageEnglish (US)
Article numbere1006061
JournalPLoS Pathogens
Volume12
Issue number12
DOIs
StatePublished - Dec 15 2016

Fingerprint

Alphavirus
Viral Structural Proteins
Viruses
Alphavirus Infections
Cell Membrane
Sindbis Virus
Virus Receptors
Nucleocapsid
Proteins
Infectious Disease Transmission
Capsid
RNA Viruses
Capsid Proteins
Viral Proteins
Virus Diseases
Tubulin
Cytoskeleton
Virion
Actins
Down-Regulation

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology

Cite this

Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission. / Martinez, Maria Guadalupe; Kielian, Margaret.

In: PLoS Pathogens, Vol. 12, No. 12, e1006061, 15.12.2016.

Research output: Contribution to journalArticle

@article{e4b6f7b30b2f4253b8050a8c0ab53598,
title = "Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission",
abstract = "Alphaviruses are highly organized enveloped RNA viruses with an internal nucleocapsid surrounded by a membrane containing the E2 and E1 transmembrane proteins. Alphavirus budding takes place at the plasma membrane and requires the interaction of the cytoplasmic domain of E2 with the capsid protein. Here we used WT alphaviruses and Sindbis virus in which E2 was fused to a fluorescent protein to characterize virus exit from host cells. Our results show that alphavirus infection induced striking modifications of the host cell cytoskeleton and resulted in the formation of stable intercellular extensions that emanated exclusively from the infected cell. The intercellular extensions were long (> 10 μM), contained actin and tubulin, and formed flattened contacts with neighboring cells, but did not mediate membrane or cytoplasmic continuity between cells. Receptor down-regulation studies indicated that formation of stable extensions did not require the virus receptor, and that extensions promoted cell-to-cell virus transmission to receptor-depleted cells. Virus mutant experiments demonstrated that formation of extensions required the E2-capsid interaction but not active particle budding, while intercellular transmission of infection required the production of fusion-active virus particles. Protein expression studies showed that even in the absence of virus infection, the viral structural proteins alone induced intercellular extensions, and that these extensions were preferentially targeted to non-expressing cells. Together, our results identify a mechanism for alphavirus cell-to-cell transmission and define the key viral protein interactions that it requires.",
author = "Martinez, {Maria Guadalupe} and Margaret Kielian",
year = "2016",
month = "12",
day = "15",
doi = "10.1371/journal.ppat.1006061",
language = "English (US)",
volume = "12",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission

AU - Martinez, Maria Guadalupe

AU - Kielian, Margaret

PY - 2016/12/15

Y1 - 2016/12/15

N2 - Alphaviruses are highly organized enveloped RNA viruses with an internal nucleocapsid surrounded by a membrane containing the E2 and E1 transmembrane proteins. Alphavirus budding takes place at the plasma membrane and requires the interaction of the cytoplasmic domain of E2 with the capsid protein. Here we used WT alphaviruses and Sindbis virus in which E2 was fused to a fluorescent protein to characterize virus exit from host cells. Our results show that alphavirus infection induced striking modifications of the host cell cytoskeleton and resulted in the formation of stable intercellular extensions that emanated exclusively from the infected cell. The intercellular extensions were long (> 10 μM), contained actin and tubulin, and formed flattened contacts with neighboring cells, but did not mediate membrane or cytoplasmic continuity between cells. Receptor down-regulation studies indicated that formation of stable extensions did not require the virus receptor, and that extensions promoted cell-to-cell virus transmission to receptor-depleted cells. Virus mutant experiments demonstrated that formation of extensions required the E2-capsid interaction but not active particle budding, while intercellular transmission of infection required the production of fusion-active virus particles. Protein expression studies showed that even in the absence of virus infection, the viral structural proteins alone induced intercellular extensions, and that these extensions were preferentially targeted to non-expressing cells. Together, our results identify a mechanism for alphavirus cell-to-cell transmission and define the key viral protein interactions that it requires.

AB - Alphaviruses are highly organized enveloped RNA viruses with an internal nucleocapsid surrounded by a membrane containing the E2 and E1 transmembrane proteins. Alphavirus budding takes place at the plasma membrane and requires the interaction of the cytoplasmic domain of E2 with the capsid protein. Here we used WT alphaviruses and Sindbis virus in which E2 was fused to a fluorescent protein to characterize virus exit from host cells. Our results show that alphavirus infection induced striking modifications of the host cell cytoskeleton and resulted in the formation of stable intercellular extensions that emanated exclusively from the infected cell. The intercellular extensions were long (> 10 μM), contained actin and tubulin, and formed flattened contacts with neighboring cells, but did not mediate membrane or cytoplasmic continuity between cells. Receptor down-regulation studies indicated that formation of stable extensions did not require the virus receptor, and that extensions promoted cell-to-cell virus transmission to receptor-depleted cells. Virus mutant experiments demonstrated that formation of extensions required the E2-capsid interaction but not active particle budding, while intercellular transmission of infection required the production of fusion-active virus particles. Protein expression studies showed that even in the absence of virus infection, the viral structural proteins alone induced intercellular extensions, and that these extensions were preferentially targeted to non-expressing cells. Together, our results identify a mechanism for alphavirus cell-to-cell transmission and define the key viral protein interactions that it requires.

UR - http://www.scopus.com/inward/record.url?scp=85007543330&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007543330&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1006061

DO - 10.1371/journal.ppat.1006061

M3 - Article

VL - 12

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 12

M1 - e1006061

ER -