In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. Kinectics of binding, extraction properties, and lack of requirement for cytosol proteins.

Martin I. Surks, D. H. Koerner, J. H. Oppenheimer

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

Isolated hepatic nuclei from euthyroid rats were incubated with tracer (125I)L-triiodothyronine (T3) and increasing doses of nonradioactive T3 for 30 min at 37degrees C. The T3 bound specifically to nuclear sites increased with increasing T3 doses to a plateau, which represented the nuclear binding capacity, M. Addition of 1 mM KCN, NaF, dinitrophenol, oriodoacetate did not affect nuclear binding, indicating that active metabolism was not required. Kinetic studies showed that the nuclear sites were equilibrated with T3 within 30 min of incubation (one-half maximal binding at 3 min) and that the rate of release of T3 in vitro (0.058 min-1) was the same for endogenous T3 or for T3 bound to nuclei in vitro. Nuclear T3 resisted extraction with 0.14 M NaC1 buffered at pH 7.5, but both endogenous hormone and T3 bound in vitro were readily extracted by 0.4 M KC1 at pH 8.0. The elution profiles of endogenous and in vitro-bound T3 from Sephadex G-100 columns showed a common protein peak with a molecular weight of 60-65,000, assuming a globular protein. Scatchard analysis of in vitro displacement studies showed a single class of binding sites. Mean M equals 0.23 times 10-9 M or 0.85 ng T3 for nuclei isolated from 1 g of liver. Mean M closely corresponded to that anticipated from reported in vivo studies. The apparent association constant Ka for the nuclear sites, 5.55 times 108 M-1, was lower than in studies in vivo, probably attributable to the different ionic milieu of nuclei in the incubation buffer and in the intact cell. Thus, the identity of the nuclear T3 binding sites studied in vitro to those reported for endogenous hormone is demonstrated by similar binding capacities, release rates, analogue binding affinities (previously reported), and localization to chromatin nonhistone proteins of comparable molecular weight. The role of cytosol protein in nuclear binding was assessed by comparing binding parameters for extensively washed nuclei and nuclei incubated either with contaminating or added cytosol. No difference in Ka or M was found. Moreover, it was unlikely that specific cytosol proteins were already present in nuclei and functioned during incubation as a shuttle for T3, since Ka and M for nuclei obtained from athyreotic rats were similar to Ka and M for nuclei from euthyroid animals. Thus, an initial interaction between T3 and specific cytosol proteins does not appear to be a prerequisite for translocation of T3 to nuclear sites.

Original languageEnglish (US)
Pages (from-to)50-60
Number of pages11
JournalJournal of Clinical Investigation
Volume55
Issue number1
StatePublished - Jan 1975
Externally publishedYes

Fingerprint

Thyroid Hormone Receptors
Cytosol
Liver
Proteins
Molecular Weight
Binding Sites
Hormones
Dinitrophenols
Triiodothyronine
Nuclear Proteins
Chromatin
In Vitro Techniques
Buffers

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{047b46ae53594ea994beac47b037d94e,
title = "In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. Kinectics of binding, extraction properties, and lack of requirement for cytosol proteins.",
abstract = "Isolated hepatic nuclei from euthyroid rats were incubated with tracer (125I)L-triiodothyronine (T3) and increasing doses of nonradioactive T3 for 30 min at 37degrees C. The T3 bound specifically to nuclear sites increased with increasing T3 doses to a plateau, which represented the nuclear binding capacity, M. Addition of 1 mM KCN, NaF, dinitrophenol, oriodoacetate did not affect nuclear binding, indicating that active metabolism was not required. Kinetic studies showed that the nuclear sites were equilibrated with T3 within 30 min of incubation (one-half maximal binding at 3 min) and that the rate of release of T3 in vitro (0.058 min-1) was the same for endogenous T3 or for T3 bound to nuclei in vitro. Nuclear T3 resisted extraction with 0.14 M NaC1 buffered at pH 7.5, but both endogenous hormone and T3 bound in vitro were readily extracted by 0.4 M KC1 at pH 8.0. The elution profiles of endogenous and in vitro-bound T3 from Sephadex G-100 columns showed a common protein peak with a molecular weight of 60-65,000, assuming a globular protein. Scatchard analysis of in vitro displacement studies showed a single class of binding sites. Mean M equals 0.23 times 10-9 M or 0.85 ng T3 for nuclei isolated from 1 g of liver. Mean M closely corresponded to that anticipated from reported in vivo studies. The apparent association constant Ka for the nuclear sites, 5.55 times 108 M-1, was lower than in studies in vivo, probably attributable to the different ionic milieu of nuclei in the incubation buffer and in the intact cell. Thus, the identity of the nuclear T3 binding sites studied in vitro to those reported for endogenous hormone is demonstrated by similar binding capacities, release rates, analogue binding affinities (previously reported), and localization to chromatin nonhistone proteins of comparable molecular weight. The role of cytosol protein in nuclear binding was assessed by comparing binding parameters for extensively washed nuclei and nuclei incubated either with contaminating or added cytosol. No difference in Ka or M was found. Moreover, it was unlikely that specific cytosol proteins were already present in nuclei and functioned during incubation as a shuttle for T3, since Ka and M for nuclei obtained from athyreotic rats were similar to Ka and M for nuclei from euthyroid animals. Thus, an initial interaction between T3 and specific cytosol proteins does not appear to be a prerequisite for translocation of T3 to nuclear sites.",
author = "Surks, {Martin I.} and Koerner, {D. H.} and Oppenheimer, {J. H.}",
year = "1975",
month = "1",
language = "English (US)",
volume = "55",
pages = "50--60",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "1",

}

TY - JOUR

T1 - In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. Kinectics of binding, extraction properties, and lack of requirement for cytosol proteins.

AU - Surks, Martin I.

AU - Koerner, D. H.

AU - Oppenheimer, J. H.

PY - 1975/1

Y1 - 1975/1

N2 - Isolated hepatic nuclei from euthyroid rats were incubated with tracer (125I)L-triiodothyronine (T3) and increasing doses of nonradioactive T3 for 30 min at 37degrees C. The T3 bound specifically to nuclear sites increased with increasing T3 doses to a plateau, which represented the nuclear binding capacity, M. Addition of 1 mM KCN, NaF, dinitrophenol, oriodoacetate did not affect nuclear binding, indicating that active metabolism was not required. Kinetic studies showed that the nuclear sites were equilibrated with T3 within 30 min of incubation (one-half maximal binding at 3 min) and that the rate of release of T3 in vitro (0.058 min-1) was the same for endogenous T3 or for T3 bound to nuclei in vitro. Nuclear T3 resisted extraction with 0.14 M NaC1 buffered at pH 7.5, but both endogenous hormone and T3 bound in vitro were readily extracted by 0.4 M KC1 at pH 8.0. The elution profiles of endogenous and in vitro-bound T3 from Sephadex G-100 columns showed a common protein peak with a molecular weight of 60-65,000, assuming a globular protein. Scatchard analysis of in vitro displacement studies showed a single class of binding sites. Mean M equals 0.23 times 10-9 M or 0.85 ng T3 for nuclei isolated from 1 g of liver. Mean M closely corresponded to that anticipated from reported in vivo studies. The apparent association constant Ka for the nuclear sites, 5.55 times 108 M-1, was lower than in studies in vivo, probably attributable to the different ionic milieu of nuclei in the incubation buffer and in the intact cell. Thus, the identity of the nuclear T3 binding sites studied in vitro to those reported for endogenous hormone is demonstrated by similar binding capacities, release rates, analogue binding affinities (previously reported), and localization to chromatin nonhistone proteins of comparable molecular weight. The role of cytosol protein in nuclear binding was assessed by comparing binding parameters for extensively washed nuclei and nuclei incubated either with contaminating or added cytosol. No difference in Ka or M was found. Moreover, it was unlikely that specific cytosol proteins were already present in nuclei and functioned during incubation as a shuttle for T3, since Ka and M for nuclei obtained from athyreotic rats were similar to Ka and M for nuclei from euthyroid animals. Thus, an initial interaction between T3 and specific cytosol proteins does not appear to be a prerequisite for translocation of T3 to nuclear sites.

AB - Isolated hepatic nuclei from euthyroid rats were incubated with tracer (125I)L-triiodothyronine (T3) and increasing doses of nonradioactive T3 for 30 min at 37degrees C. The T3 bound specifically to nuclear sites increased with increasing T3 doses to a plateau, which represented the nuclear binding capacity, M. Addition of 1 mM KCN, NaF, dinitrophenol, oriodoacetate did not affect nuclear binding, indicating that active metabolism was not required. Kinetic studies showed that the nuclear sites were equilibrated with T3 within 30 min of incubation (one-half maximal binding at 3 min) and that the rate of release of T3 in vitro (0.058 min-1) was the same for endogenous T3 or for T3 bound to nuclei in vitro. Nuclear T3 resisted extraction with 0.14 M NaC1 buffered at pH 7.5, but both endogenous hormone and T3 bound in vitro were readily extracted by 0.4 M KC1 at pH 8.0. The elution profiles of endogenous and in vitro-bound T3 from Sephadex G-100 columns showed a common protein peak with a molecular weight of 60-65,000, assuming a globular protein. Scatchard analysis of in vitro displacement studies showed a single class of binding sites. Mean M equals 0.23 times 10-9 M or 0.85 ng T3 for nuclei isolated from 1 g of liver. Mean M closely corresponded to that anticipated from reported in vivo studies. The apparent association constant Ka for the nuclear sites, 5.55 times 108 M-1, was lower than in studies in vivo, probably attributable to the different ionic milieu of nuclei in the incubation buffer and in the intact cell. Thus, the identity of the nuclear T3 binding sites studied in vitro to those reported for endogenous hormone is demonstrated by similar binding capacities, release rates, analogue binding affinities (previously reported), and localization to chromatin nonhistone proteins of comparable molecular weight. The role of cytosol protein in nuclear binding was assessed by comparing binding parameters for extensively washed nuclei and nuclei incubated either with contaminating or added cytosol. No difference in Ka or M was found. Moreover, it was unlikely that specific cytosol proteins were already present in nuclei and functioned during incubation as a shuttle for T3, since Ka and M for nuclei obtained from athyreotic rats were similar to Ka and M for nuclei from euthyroid animals. Thus, an initial interaction between T3 and specific cytosol proteins does not appear to be a prerequisite for translocation of T3 to nuclear sites.

UR - http://www.scopus.com/inward/record.url?scp=0016433304&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0016433304&partnerID=8YFLogxK

M3 - Article

C2 - 162784

AN - SCOPUS:0016433304

VL - 55

SP - 50

EP - 60

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 1

ER -