Histone acetylation and the cell-cycle in cancer.

C. Wang, M. Fu, Sridhar Mani, S. Wadler, A. M. Senderowicz, R. G. Pestell

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

A number of distinct surveillance systems are found in mammalian cells that have the capacity to interrupt normal cell-cycle progression. These are referred to as cell cycle check points. Surveillance systems activated by DNA damage act at three stages, one at the G1/S phase boundary, one that monitors progression through S phase and one at the G2/M boundary. The initiation of DNA synthesis and irrevocable progression through G1 phase represents an additional checkpoint when the cell commits to DNA synthesis. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks), and their heterodimeric cyclin partner. Orderly progression through the cell-cycle checkpoints involves coordinated activation of the Cdks that, in the presence of an associated Cdk-activating kinase (CAK), phosphorylate target substrates including members of the "pocket protein" family. One of these, the product of the retinoblastoma susceptibility gene (the pRB protein), is phosphorylated sequentially by both cyclin D/Cdk4 complexes and cyclin E/Cdk2 kinases. Recent studies have identified important cross talk between the cell-cycle regulatory apparatus and proteins regulating histone acetylation. pRB binds both E2F proteins and histone deacetylase (HDAC) complexes. HDAC plays an important role in pRB tumor suppression function and transcriptional repression. Histones are required for accurate assembly of chromatin and the induction of histone gene expression is tightly coordinated. Recent studies have identified an important alternate substrate of cyclin E/Cdk2, NPAT (nuclear protein mapped to the ATM locus) which plays a critical role in promoting cell-cycle progression in the absence of pRB, and contributes to cell-cycle regulated histone gene expression. The acetylation of histones by a number of histone acetyl transferases (HATs) also plays an important role in coordinating gene expression and cell-cycle progression. Components of the cell-cycle regulatory apparatus are both regulated by HATs and bind directly to HATs. Finally transcription factors have been identified as substrate for HATs. Mutations of these transcription factors at their sites of acetylation has been associated with constitutive activity and enhanced cellular proliferation, suggesting an important role for acetylation in transcriptional repression as well as activation. Together these studies provide a working model in which the cell-cycle regulatory kinases phosphorylate and inactivate HDACs, coordinate histone gene expression and bind to histone acetylases themselves. The recent evidence for cross-talk between the cyclin-dependent kinases and histone gene expression on the one hand and cyclin-dependent regulation of histone acetylases on the other, suggests chemotherapeutics targeting histone acetylation may have complex and possibly complementary effects with agents targeting Cdks.

Original languageEnglish (US)
JournalFrontiers in Bioscience
Volume6
StatePublished - 2001

Fingerprint

Acetylation
Histones
Cell Cycle
Cells
Neoplasms
Gene expression
Cyclin-Dependent Kinases
Transferases
Gene Expression
Histone Acetyltransferases
Cyclin E
Cyclins
Histone Deacetylases
G1 Phase
S Phase
DNA
Transcription Factors
Phosphotransferases
Substrates
Chemical activation

Cite this

Wang, C., Fu, M., Mani, S., Wadler, S., Senderowicz, A. M., & Pestell, R. G. (2001). Histone acetylation and the cell-cycle in cancer. Frontiers in Bioscience, 6.

Histone acetylation and the cell-cycle in cancer. / Wang, C.; Fu, M.; Mani, Sridhar; Wadler, S.; Senderowicz, A. M.; Pestell, R. G.

In: Frontiers in Bioscience, Vol. 6, 2001.

Research output: Contribution to journalArticle

Wang, C, Fu, M, Mani, S, Wadler, S, Senderowicz, AM & Pestell, RG 2001, 'Histone acetylation and the cell-cycle in cancer.', Frontiers in Bioscience, vol. 6.
Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, Pestell RG. Histone acetylation and the cell-cycle in cancer. Frontiers in Bioscience. 2001;6.
Wang, C. ; Fu, M. ; Mani, Sridhar ; Wadler, S. ; Senderowicz, A. M. ; Pestell, R. G. / Histone acetylation and the cell-cycle in cancer. In: Frontiers in Bioscience. 2001 ; Vol. 6.
@article{faa6b2de025a40dfbd738bc744ac8a31,
title = "Histone acetylation and the cell-cycle in cancer.",
abstract = "A number of distinct surveillance systems are found in mammalian cells that have the capacity to interrupt normal cell-cycle progression. These are referred to as cell cycle check points. Surveillance systems activated by DNA damage act at three stages, one at the G1/S phase boundary, one that monitors progression through S phase and one at the G2/M boundary. The initiation of DNA synthesis and irrevocable progression through G1 phase represents an additional checkpoint when the cell commits to DNA synthesis. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks), and their heterodimeric cyclin partner. Orderly progression through the cell-cycle checkpoints involves coordinated activation of the Cdks that, in the presence of an associated Cdk-activating kinase (CAK), phosphorylate target substrates including members of the {"}pocket protein{"} family. One of these, the product of the retinoblastoma susceptibility gene (the pRB protein), is phosphorylated sequentially by both cyclin D/Cdk4 complexes and cyclin E/Cdk2 kinases. Recent studies have identified important cross talk between the cell-cycle regulatory apparatus and proteins regulating histone acetylation. pRB binds both E2F proteins and histone deacetylase (HDAC) complexes. HDAC plays an important role in pRB tumor suppression function and transcriptional repression. Histones are required for accurate assembly of chromatin and the induction of histone gene expression is tightly coordinated. Recent studies have identified an important alternate substrate of cyclin E/Cdk2, NPAT (nuclear protein mapped to the ATM locus) which plays a critical role in promoting cell-cycle progression in the absence of pRB, and contributes to cell-cycle regulated histone gene expression. The acetylation of histones by a number of histone acetyl transferases (HATs) also plays an important role in coordinating gene expression and cell-cycle progression. Components of the cell-cycle regulatory apparatus are both regulated by HATs and bind directly to HATs. Finally transcription factors have been identified as substrate for HATs. Mutations of these transcription factors at their sites of acetylation has been associated with constitutive activity and enhanced cellular proliferation, suggesting an important role for acetylation in transcriptional repression as well as activation. Together these studies provide a working model in which the cell-cycle regulatory kinases phosphorylate and inactivate HDACs, coordinate histone gene expression and bind to histone acetylases themselves. The recent evidence for cross-talk between the cyclin-dependent kinases and histone gene expression on the one hand and cyclin-dependent regulation of histone acetylases on the other, suggests chemotherapeutics targeting histone acetylation may have complex and possibly complementary effects with agents targeting Cdks.",
author = "C. Wang and M. Fu and Sridhar Mani and S. Wadler and Senderowicz, {A. M.} and Pestell, {R. G.}",
year = "2001",
language = "English (US)",
volume = "6",
journal = "Frontiers in Bioscience - Landmark",
issn = "1093-9946",
publisher = "Frontiers in Bioscience",

}

TY - JOUR

T1 - Histone acetylation and the cell-cycle in cancer.

AU - Wang, C.

AU - Fu, M.

AU - Mani, Sridhar

AU - Wadler, S.

AU - Senderowicz, A. M.

AU - Pestell, R. G.

PY - 2001

Y1 - 2001

N2 - A number of distinct surveillance systems are found in mammalian cells that have the capacity to interrupt normal cell-cycle progression. These are referred to as cell cycle check points. Surveillance systems activated by DNA damage act at three stages, one at the G1/S phase boundary, one that monitors progression through S phase and one at the G2/M boundary. The initiation of DNA synthesis and irrevocable progression through G1 phase represents an additional checkpoint when the cell commits to DNA synthesis. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks), and their heterodimeric cyclin partner. Orderly progression through the cell-cycle checkpoints involves coordinated activation of the Cdks that, in the presence of an associated Cdk-activating kinase (CAK), phosphorylate target substrates including members of the "pocket protein" family. One of these, the product of the retinoblastoma susceptibility gene (the pRB protein), is phosphorylated sequentially by both cyclin D/Cdk4 complexes and cyclin E/Cdk2 kinases. Recent studies have identified important cross talk between the cell-cycle regulatory apparatus and proteins regulating histone acetylation. pRB binds both E2F proteins and histone deacetylase (HDAC) complexes. HDAC plays an important role in pRB tumor suppression function and transcriptional repression. Histones are required for accurate assembly of chromatin and the induction of histone gene expression is tightly coordinated. Recent studies have identified an important alternate substrate of cyclin E/Cdk2, NPAT (nuclear protein mapped to the ATM locus) which plays a critical role in promoting cell-cycle progression in the absence of pRB, and contributes to cell-cycle regulated histone gene expression. The acetylation of histones by a number of histone acetyl transferases (HATs) also plays an important role in coordinating gene expression and cell-cycle progression. Components of the cell-cycle regulatory apparatus are both regulated by HATs and bind directly to HATs. Finally transcription factors have been identified as substrate for HATs. Mutations of these transcription factors at their sites of acetylation has been associated with constitutive activity and enhanced cellular proliferation, suggesting an important role for acetylation in transcriptional repression as well as activation. Together these studies provide a working model in which the cell-cycle regulatory kinases phosphorylate and inactivate HDACs, coordinate histone gene expression and bind to histone acetylases themselves. The recent evidence for cross-talk between the cyclin-dependent kinases and histone gene expression on the one hand and cyclin-dependent regulation of histone acetylases on the other, suggests chemotherapeutics targeting histone acetylation may have complex and possibly complementary effects with agents targeting Cdks.

AB - A number of distinct surveillance systems are found in mammalian cells that have the capacity to interrupt normal cell-cycle progression. These are referred to as cell cycle check points. Surveillance systems activated by DNA damage act at three stages, one at the G1/S phase boundary, one that monitors progression through S phase and one at the G2/M boundary. The initiation of DNA synthesis and irrevocable progression through G1 phase represents an additional checkpoint when the cell commits to DNA synthesis. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks), and their heterodimeric cyclin partner. Orderly progression through the cell-cycle checkpoints involves coordinated activation of the Cdks that, in the presence of an associated Cdk-activating kinase (CAK), phosphorylate target substrates including members of the "pocket protein" family. One of these, the product of the retinoblastoma susceptibility gene (the pRB protein), is phosphorylated sequentially by both cyclin D/Cdk4 complexes and cyclin E/Cdk2 kinases. Recent studies have identified important cross talk between the cell-cycle regulatory apparatus and proteins regulating histone acetylation. pRB binds both E2F proteins and histone deacetylase (HDAC) complexes. HDAC plays an important role in pRB tumor suppression function and transcriptional repression. Histones are required for accurate assembly of chromatin and the induction of histone gene expression is tightly coordinated. Recent studies have identified an important alternate substrate of cyclin E/Cdk2, NPAT (nuclear protein mapped to the ATM locus) which plays a critical role in promoting cell-cycle progression in the absence of pRB, and contributes to cell-cycle regulated histone gene expression. The acetylation of histones by a number of histone acetyl transferases (HATs) also plays an important role in coordinating gene expression and cell-cycle progression. Components of the cell-cycle regulatory apparatus are both regulated by HATs and bind directly to HATs. Finally transcription factors have been identified as substrate for HATs. Mutations of these transcription factors at their sites of acetylation has been associated with constitutive activity and enhanced cellular proliferation, suggesting an important role for acetylation in transcriptional repression as well as activation. Together these studies provide a working model in which the cell-cycle regulatory kinases phosphorylate and inactivate HDACs, coordinate histone gene expression and bind to histone acetylases themselves. The recent evidence for cross-talk between the cyclin-dependent kinases and histone gene expression on the one hand and cyclin-dependent regulation of histone acetylases on the other, suggests chemotherapeutics targeting histone acetylation may have complex and possibly complementary effects with agents targeting Cdks.

UR - http://www.scopus.com/inward/record.url?scp=0035316847&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035316847&partnerID=8YFLogxK

M3 - Article

C2 - 11282573

AN - SCOPUS:0035316847

VL - 6

JO - Frontiers in Bioscience - Landmark

JF - Frontiers in Bioscience - Landmark

SN - 1093-9946

ER -