Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality

X. Wang, L. Liu, Cristina Montagna, T. Ried, C. X. Deng

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1+/Δ11) with Parp1-null mice. We show that Brca1Δ11/Δ11;Parp1-/- embryos die before embryonic (E) day 6.5, whereas Brca1Δ11/Δ11 embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1Δ11/Δ11 embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1Δ11/Δ11;Parp1+/- MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.

Original languageEnglish (US)
Pages (from-to)924-931
Number of pages8
JournalCell Death and Differentiation
Volume14
Issue number5
DOIs
StatePublished - May 2007
Externally publishedYes

Fingerprint

Telomere Shortening
Haploinsufficiency
Centrosome
Apoptosis
Breast Neoplasms
Embryonic Structures
Telomere
DNA Damage
BRCA1 Gene
Haploidy
Chromosome Aberrations
DNA Repair
Therapeutics
Maintenance
Safety
Mutation
Poly (ADP-Ribose) Polymerase-1

ASJC Scopus subject areas

  • Cell Biology

Cite this

@article{65fa5d4f84df49b08f5e1a1fc157404b,
title = "Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality",
abstract = "The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1+/Δ11) with Parp1-null mice. We show that Brca1Δ11/Δ11;Parp1-/- embryos die before embryonic (E) day 6.5, whereas Brca1Δ11/Δ11 embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1Δ11/Δ11 embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1Δ11/Δ11;Parp1+/- MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.",
author = "X. Wang and L. Liu and Cristina Montagna and T. Ried and Deng, {C. X.}",
year = "2007",
month = "5",
doi = "10.1038/sj.cdd.4402105",
language = "English (US)",
volume = "14",
pages = "924--931",
journal = "Cell Death and Differentiation",
issn = "1350-9047",
publisher = "Nature Publishing Group",
number = "5",

}

TY - JOUR

T1 - Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality

AU - Wang, X.

AU - Liu, L.

AU - Montagna, Cristina

AU - Ried, T.

AU - Deng, C. X.

PY - 2007/5

Y1 - 2007/5

N2 - The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1+/Δ11) with Parp1-null mice. We show that Brca1Δ11/Δ11;Parp1-/- embryos die before embryonic (E) day 6.5, whereas Brca1Δ11/Δ11 embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1Δ11/Δ11 embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1Δ11/Δ11;Parp1+/- MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.

AB - The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1+/Δ11) with Parp1-null mice. We show that Brca1Δ11/Δ11;Parp1-/- embryos die before embryonic (E) day 6.5, whereas Brca1Δ11/Δ11 embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1Δ11/Δ11 embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1Δ11/Δ11;Parp1+/- MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.

UR - http://www.scopus.com/inward/record.url?scp=34247346068&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247346068&partnerID=8YFLogxK

U2 - 10.1038/sj.cdd.4402105

DO - 10.1038/sj.cdd.4402105

M3 - Article

VL - 14

SP - 924

EP - 931

JO - Cell Death and Differentiation

JF - Cell Death and Differentiation

SN - 1350-9047

IS - 5

ER -