Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes

Parvinder Kaur, Michael Aschner, Tore Syversen

Research output: Contribution to journalArticle

141 Citations (Scopus)

Abstract

Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH2DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure. The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with 5 μM MeHg for 30 min led to significant (p < 0.05) increase in ROS and reduction (p < 0.001) in GSH content. Depletion of intracellular GSH by DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly (p < 0.02) increased after DEM treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely, supplementation with GSH precursor protects against MeHg exposure in vitro.

Original languageEnglish (US)
Pages (from-to)492-500
Number of pages9
JournalNeuroToxicology
Volume27
Issue number4
DOIs
StatePublished - Jul 2006
Externally publishedYes

Fingerprint

diethyl maleate
Primary Cell Culture
Acetylcysteine
Mercury
Cell culture
Astrocytes
Neurons
Glutathione
Reactive Oxygen Species
Modulation
Cysteine
Oxidative stress
Cytotoxicity
Oxidative Stress
Cell Culture Techniques
Neurodegenerative Diseases
Oxidoreductases
Derivatives

Keywords

  • Glutathione
  • In vitro
  • Methyl mercury
  • Neurotoxicity
  • Reactive oxygen species

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Neuroscience(all)
  • Toxicology

Cite this

Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. / Kaur, Parvinder; Aschner, Michael; Syversen, Tore.

In: NeuroToxicology, Vol. 27, No. 4, 07.2006, p. 492-500.

Research output: Contribution to journalArticle

@article{e0fe752856104ae68cefdec4ef26214c,
title = "Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes",
abstract = "Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH2DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure. The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with 5 μM MeHg for 30 min led to significant (p < 0.05) increase in ROS and reduction (p < 0.001) in GSH content. Depletion of intracellular GSH by DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly (p < 0.02) increased after DEM treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely, supplementation with GSH precursor protects against MeHg exposure in vitro.",
keywords = "Glutathione, In vitro, Methyl mercury, Neurotoxicity, Reactive oxygen species",
author = "Parvinder Kaur and Michael Aschner and Tore Syversen",
year = "2006",
month = "7",
doi = "10.1016/j.neuro.2006.01.010",
language = "English (US)",
volume = "27",
pages = "492--500",
journal = "NeuroToxicology",
issn = "0161-813X",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes

AU - Kaur, Parvinder

AU - Aschner, Michael

AU - Syversen, Tore

PY - 2006/7

Y1 - 2006/7

N2 - Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH2DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure. The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with 5 μM MeHg for 30 min led to significant (p < 0.05) increase in ROS and reduction (p < 0.001) in GSH content. Depletion of intracellular GSH by DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly (p < 0.02) increased after DEM treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely, supplementation with GSH precursor protects against MeHg exposure in vitro.

AB - Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH2DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure. The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with 5 μM MeHg for 30 min led to significant (p < 0.05) increase in ROS and reduction (p < 0.001) in GSH content. Depletion of intracellular GSH by DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly (p < 0.02) increased after DEM treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely, supplementation with GSH precursor protects against MeHg exposure in vitro.

KW - Glutathione

KW - In vitro

KW - Methyl mercury

KW - Neurotoxicity

KW - Reactive oxygen species

UR - http://www.scopus.com/inward/record.url?scp=33744990187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33744990187&partnerID=8YFLogxK

U2 - 10.1016/j.neuro.2006.01.010

DO - 10.1016/j.neuro.2006.01.010

M3 - Article

C2 - 16513172

AN - SCOPUS:33744990187

VL - 27

SP - 492

EP - 500

JO - NeuroToxicology

JF - NeuroToxicology

SN - 0161-813X

IS - 4

ER -