TY - JOUR
T1 - Global, integrated analysis of methylomes and transcriptomes from laser capture microdissected bronchial and alveolar cells in human lung
AU - Dong, Xiao
AU - Shi, Miao
AU - Lee, Moonsook
AU - Toro, Rafael
AU - Gravina, Silvia
AU - Han, Weiguo
AU - Yasuda, Shoya
AU - Wang, Tao
AU - Zhang, Zhengdong
AU - Vijg, Jan
AU - Suh, Yousin
AU - Spivack, Simon D.
N1 - Funding Information:
This research was supported by the HHS j National Institutes of Health (NIH) [grant number 1R01-CA180126-01 to J.V., Y.S. and S.D.S.].
Funding Information:
This research was supported by the HHS | National Institutes of Health (NIH) [grant number 1R01-CA180126-01 to J.V., Y.S. and S.D.S.]. The authors thank Shahina B. Maqbool from Epigenomics Core and Jidong Shan from Molecular Cytogenetic Core of Department of Genetics, Albert Einstein College of Medicine for providing sequencing and T cell isolation services.
Publisher Copyright:
© 2018 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2018/3/4
Y1 - 2018/3/4
N2 - Gene regulatory analysis of highly diverse human tissues in vivo is essentially constrained by the challenge of performing genome-wide, integrated epigenetic and transcriptomic analysis in small selected groups of specific cell types. Here we performed genome-wide bisulfite sequencing and RNA-seq from the same small groups of bronchial and alveolar cells isolated by laser capture microdissection from flash-frozen lung tissue of 12 donors and their peripheral blood T cells. Methylation and transcriptome patterns differed between alveolar and bronchial cells, while each of these epithelia showed more differences from mesodermally-derived T cells. Differentially methylated regions (DMRs) between alveolar and bronchial cells tended to locate at regulatory regions affecting promoters of 4,350 genes. A large number of pathways enriched for these DMRs including GTPase signal transduction, cell death, and skeletal muscle. Similar patterns of transcriptome differences were observed: 4,108 differentially expressed genes (DEGs) enriched in GTPase signal transduction, inflammation, cilium assembly, and others. Prioritizing using DMR-DEG regulatory network, we highlighted genes, e.g., ETS1, PPARG, and RXRG, at prominent alveolar vs. bronchial cell discriminant nodes. Our results show that multi-omic analysis of small, highly specific cells is feasible and yields unique physiologic loci distinguishing human lung cell types in situ.
AB - Gene regulatory analysis of highly diverse human tissues in vivo is essentially constrained by the challenge of performing genome-wide, integrated epigenetic and transcriptomic analysis in small selected groups of specific cell types. Here we performed genome-wide bisulfite sequencing and RNA-seq from the same small groups of bronchial and alveolar cells isolated by laser capture microdissection from flash-frozen lung tissue of 12 donors and their peripheral blood T cells. Methylation and transcriptome patterns differed between alveolar and bronchial cells, while each of these epithelia showed more differences from mesodermally-derived T cells. Differentially methylated regions (DMRs) between alveolar and bronchial cells tended to locate at regulatory regions affecting promoters of 4,350 genes. A large number of pathways enriched for these DMRs including GTPase signal transduction, cell death, and skeletal muscle. Similar patterns of transcriptome differences were observed: 4,108 differentially expressed genes (DEGs) enriched in GTPase signal transduction, inflammation, cilium assembly, and others. Prioritizing using DMR-DEG regulatory network, we highlighted genes, e.g., ETS1, PPARG, and RXRG, at prominent alveolar vs. bronchial cell discriminant nodes. Our results show that multi-omic analysis of small, highly specific cells is feasible and yields unique physiologic loci distinguishing human lung cell types in situ.
KW - RNA sequencing
KW - alveolar cell
KW - bronchial cell
KW - laser capture microdissection
KW - whole-genome bisulfite sequencing
UR - http://www.scopus.com/inward/record.url?scp=85046768321&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046768321&partnerID=8YFLogxK
U2 - 10.1080/15592294.2018.1441650
DO - 10.1080/15592294.2018.1441650
M3 - Article
C2 - 29465290
AN - SCOPUS:85046768321
SN - 1559-2294
VL - 13
SP - 264
EP - 274
JO - Epigenetics
JF - Epigenetics
IS - 3
ER -