TY - JOUR
T1 - Gap junction-mediated intercellular diffusion of Ca2+ in cultured human corporal smooth muscle cells
AU - Christ, G. J.
AU - Moreno, A. P.
AU - Melman, A.
AU - Spray, D. C.
PY - 1992
Y1 - 1992
N2 - Ratio imaging using the calcium-sensitive probe fura-2 was employed to study intracellular calcium concentrations and intercellular calcium flux through gap junctions in homogeneous vascular smooth muscle cell cultures derived from the human corpora cavernosa. Microinjection techniques demonstrated that fura-2 free acid was freely diffusible through gap junctions between cultured cells. The resting intracellular calcium level in fura-2-loaded cells was 176.9 ± 10.5. A robust increase in intracellular calcium was seen in response to both phenylephrine and the calcium ionophore A23187. Microinjection of Ca2+ into individual smooth muscle cells always resulted in significant, although temporally delayed, increases in intracellular calcium levels in adjacent cells; this intercellular calcium flux was reversibly blocked by inhibition of gap junctional communication with 2 mM heptanol. However, although microinjection of D-myo-inositol 1,4,5- trisphosphate [Ins(1,4,5)P3] into individual smooth muscle cells always produced significant increases in intracellular calcium levels in the injected cell, the intercellular spread of Ca2+ in response to Ins(1,4,5)P3 was more variable than for Ca2+ injections. These studies demonstrate that Ca2+, and perhaps Ins(1,4,5)P3 as well, can diffuse between smooth muscle cells through gap junction channels.
AB - Ratio imaging using the calcium-sensitive probe fura-2 was employed to study intracellular calcium concentrations and intercellular calcium flux through gap junctions in homogeneous vascular smooth muscle cell cultures derived from the human corpora cavernosa. Microinjection techniques demonstrated that fura-2 free acid was freely diffusible through gap junctions between cultured cells. The resting intracellular calcium level in fura-2-loaded cells was 176.9 ± 10.5. A robust increase in intracellular calcium was seen in response to both phenylephrine and the calcium ionophore A23187. Microinjection of Ca2+ into individual smooth muscle cells always resulted in significant, although temporally delayed, increases in intracellular calcium levels in adjacent cells; this intercellular calcium flux was reversibly blocked by inhibition of gap junctional communication with 2 mM heptanol. However, although microinjection of D-myo-inositol 1,4,5- trisphosphate [Ins(1,4,5)P3] into individual smooth muscle cells always produced significant increases in intracellular calcium levels in the injected cell, the intercellular spread of Ca2+ in response to Ins(1,4,5)P3 was more variable than for Ca2+ injections. These studies demonstrate that Ca2+, and perhaps Ins(1,4,5)P3 as well, can diffuse between smooth muscle cells through gap junction channels.
KW - erectile dysfunction
KW - fura-2
KW - inositol trisphosphate
KW - penis
KW - vascular smooth muscle
KW - α-adrenergic receptors
UR - http://www.scopus.com/inward/record.url?scp=0026780026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026780026&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.1992.263.2.c373
DO - 10.1152/ajpcell.1992.263.2.c373
M3 - Article
C2 - 1325115
AN - SCOPUS:0026780026
SN - 0363-6143
VL - 263
SP - C373-C383
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 2 32-2
ER -