Effect of number and position of EBNA-1 binding sites in Epstein-Barr virus oriP on the sites of initiation, barrier formation, and termination of replication

Timothy H K Platt, Irina Y. Tcherepanova, Carl L. Schildkraut

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

DNA replication intermediates of three plasmids containing all or part of a modified Epstein-Barr virus cis-acting plasmid maintenance region (oriP) were examined to further investigate oriP function. Replication intermediates were analyzed in vivo and in vitro by neutral-neutral two-dimensional gel electrophoresis. The major functional components of the wild-type oriP are a 140-bp dyad symmetry region (single dyad) and 20 tandem copies of a repeat with a 30-bp consensus sequence (family of repeats). A modified oriP was constructed by replacing the family of repeats with three tandem copies of the single dyad (D. A. Wysokenski and J. L. Yates, J. Virol. 63:2657-2666, 1989). Initiation was observed in vivo near the single dyad in the modified oriP, as seen in the wild-type oriP (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), but was not observed near the tandem dyads. A replication barrier and termination were observed near the tandem dyads and were similar to those observed at the family of repeats of the wild-type oriP (Gahn and Schildkraut, Cell 58:527-535, 1989). In vitro experiments indicate that the viral trans-acting factor EBNA-1 contributes to efficient barrier formation at the tandem dyads as observed in the family of repeats of the wild-type oriP (V. Dhar and C. L. Schildkraut, Mol. Cell. Biol. 11:6268-6278, 1991). The tandem dyads thus appear to function in a manner similar to the family of repeats. There are significant structural differences between the family of repeats and tandem dyads. The relationship between the number and relative positions of EBNA-1 binding sites in relation to the functions of the family of repeats and the dyad symmetry element is discussed.

Original languageEnglish (US)
Pages (from-to)1739-1745
Number of pages7
JournalJournal of Virology
Volume67
Issue number3
StatePublished - Mar 1993

Fingerprint

Human herpesvirus 4
Human Herpesvirus 4
binding sites
Binding Sites
plasmids
Plasmids
Tandem Repeat Sequences
Trans-Activators
consensus sequence
two-dimensional gel electrophoresis
Consensus Sequence
Electrophoresis, Gel, Two-Dimensional
DNA replication
cells
DNA Replication
Maintenance
EBV-encoded nuclear antigen 1
In Vitro Techniques

ASJC Scopus subject areas

  • Immunology

Cite this

Effect of number and position of EBNA-1 binding sites in Epstein-Barr virus oriP on the sites of initiation, barrier formation, and termination of replication. / Platt, Timothy H K; Tcherepanova, Irina Y.; Schildkraut, Carl L.

In: Journal of Virology, Vol. 67, No. 3, 03.1993, p. 1739-1745.

Research output: Contribution to journalArticle

@article{513c54e6165442a59a12ff48986aa9a2,
title = "Effect of number and position of EBNA-1 binding sites in Epstein-Barr virus oriP on the sites of initiation, barrier formation, and termination of replication",
abstract = "DNA replication intermediates of three plasmids containing all or part of a modified Epstein-Barr virus cis-acting plasmid maintenance region (oriP) were examined to further investigate oriP function. Replication intermediates were analyzed in vivo and in vitro by neutral-neutral two-dimensional gel electrophoresis. The major functional components of the wild-type oriP are a 140-bp dyad symmetry region (single dyad) and 20 tandem copies of a repeat with a 30-bp consensus sequence (family of repeats). A modified oriP was constructed by replacing the family of repeats with three tandem copies of the single dyad (D. A. Wysokenski and J. L. Yates, J. Virol. 63:2657-2666, 1989). Initiation was observed in vivo near the single dyad in the modified oriP, as seen in the wild-type oriP (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), but was not observed near the tandem dyads. A replication barrier and termination were observed near the tandem dyads and were similar to those observed at the family of repeats of the wild-type oriP (Gahn and Schildkraut, Cell 58:527-535, 1989). In vitro experiments indicate that the viral trans-acting factor EBNA-1 contributes to efficient barrier formation at the tandem dyads as observed in the family of repeats of the wild-type oriP (V. Dhar and C. L. Schildkraut, Mol. Cell. Biol. 11:6268-6278, 1991). The tandem dyads thus appear to function in a manner similar to the family of repeats. There are significant structural differences between the family of repeats and tandem dyads. The relationship between the number and relative positions of EBNA-1 binding sites in relation to the functions of the family of repeats and the dyad symmetry element is discussed.",
author = "Platt, {Timothy H K} and Tcherepanova, {Irina Y.} and Schildkraut, {Carl L.}",
year = "1993",
month = "3",
language = "English (US)",
volume = "67",
pages = "1739--1745",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "3",

}

TY - JOUR

T1 - Effect of number and position of EBNA-1 binding sites in Epstein-Barr virus oriP on the sites of initiation, barrier formation, and termination of replication

AU - Platt, Timothy H K

AU - Tcherepanova, Irina Y.

AU - Schildkraut, Carl L.

PY - 1993/3

Y1 - 1993/3

N2 - DNA replication intermediates of three plasmids containing all or part of a modified Epstein-Barr virus cis-acting plasmid maintenance region (oriP) were examined to further investigate oriP function. Replication intermediates were analyzed in vivo and in vitro by neutral-neutral two-dimensional gel electrophoresis. The major functional components of the wild-type oriP are a 140-bp dyad symmetry region (single dyad) and 20 tandem copies of a repeat with a 30-bp consensus sequence (family of repeats). A modified oriP was constructed by replacing the family of repeats with three tandem copies of the single dyad (D. A. Wysokenski and J. L. Yates, J. Virol. 63:2657-2666, 1989). Initiation was observed in vivo near the single dyad in the modified oriP, as seen in the wild-type oriP (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), but was not observed near the tandem dyads. A replication barrier and termination were observed near the tandem dyads and were similar to those observed at the family of repeats of the wild-type oriP (Gahn and Schildkraut, Cell 58:527-535, 1989). In vitro experiments indicate that the viral trans-acting factor EBNA-1 contributes to efficient barrier formation at the tandem dyads as observed in the family of repeats of the wild-type oriP (V. Dhar and C. L. Schildkraut, Mol. Cell. Biol. 11:6268-6278, 1991). The tandem dyads thus appear to function in a manner similar to the family of repeats. There are significant structural differences between the family of repeats and tandem dyads. The relationship between the number and relative positions of EBNA-1 binding sites in relation to the functions of the family of repeats and the dyad symmetry element is discussed.

AB - DNA replication intermediates of three plasmids containing all or part of a modified Epstein-Barr virus cis-acting plasmid maintenance region (oriP) were examined to further investigate oriP function. Replication intermediates were analyzed in vivo and in vitro by neutral-neutral two-dimensional gel electrophoresis. The major functional components of the wild-type oriP are a 140-bp dyad symmetry region (single dyad) and 20 tandem copies of a repeat with a 30-bp consensus sequence (family of repeats). A modified oriP was constructed by replacing the family of repeats with three tandem copies of the single dyad (D. A. Wysokenski and J. L. Yates, J. Virol. 63:2657-2666, 1989). Initiation was observed in vivo near the single dyad in the modified oriP, as seen in the wild-type oriP (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), but was not observed near the tandem dyads. A replication barrier and termination were observed near the tandem dyads and were similar to those observed at the family of repeats of the wild-type oriP (Gahn and Schildkraut, Cell 58:527-535, 1989). In vitro experiments indicate that the viral trans-acting factor EBNA-1 contributes to efficient barrier formation at the tandem dyads as observed in the family of repeats of the wild-type oriP (V. Dhar and C. L. Schildkraut, Mol. Cell. Biol. 11:6268-6278, 1991). The tandem dyads thus appear to function in a manner similar to the family of repeats. There are significant structural differences between the family of repeats and tandem dyads. The relationship between the number and relative positions of EBNA-1 binding sites in relation to the functions of the family of repeats and the dyad symmetry element is discussed.

UR - http://www.scopus.com/inward/record.url?scp=0027474368&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027474368&partnerID=8YFLogxK

M3 - Article

VL - 67

SP - 1739

EP - 1745

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 3

ER -