Abstract
Rhabdoid tumors (RTs) are aggressive pediatric malignancies with poor prognosis that arise due to loss of the hSNF5/INI1 tumor suppressor. Molecular studies indicate that cyclin D1, a downstream effector of INI1 is up regulated in RT, and is essential for this tumor formation. Previously we demonstrated that 4-HPR, a synthetic retinoid that targets Cyclin D1, is a potential chemotherapeutic agent for RT. To facilitate further chemical development of this retinoid, and to determine its active moiety, we synthesized small chemical libraries of 4-HPR and tested their cytotoxic effect on RT cells. We synthesized 4-HPR (1) and the derivatives (5a-5n) starting from retinoic acid. First, retinoic acid was converted to acid chloride derivatives, then in the presence of DMF, base, and aniline derivatives, we synthesized the corresponding 4-hydroxy phenyl amine derivatives (5a-5n). This procedure gave 70-90% yield. Then, the 4-HPR derivatives were tested for their ability to inhibit RT cells using an in vitro cell survival assay. We found that the 4-hydroxy group at para-position is essential for cytotoxic activity against RT cells. Furthermore, we identified a few derivatives of 4-HPR with higher cytotoxic potencies than 4-HPR. In addition, we demonstrate that either chloro, fluoro or iodo derivatives at meta-position of phenyl ring retain the cytotoxic activity. Interestingly, substitution of iodo-moiety at meta-position (5j) substantially increased the efficacy (IC50 ∼ 3 μM, Fig. 1D). These results indicate that chemical modification of 4-HPR may result in derivatives with increased therapeutic potential for RTs and that halogen substituted 4-HPR that retain the activity can be synthesized for further therapeutic and diagnostic use.
Original language | English (US) |
---|---|
Pages (from-to) | 3805-3808 |
Number of pages | 4 |
Journal | Bioorganic and Medicinal Chemistry Letters |
Volume | 18 |
Issue number | 13 |
DOIs | |
State | Published - Jul 1 2008 |
Keywords
- 4-HPR
- Cyclin D1
- Rhabdoid tumor
ASJC Scopus subject areas
- Biochemistry
- Molecular Medicine
- Molecular Biology
- Pharmaceutical Science
- Drug Discovery
- Clinical Biochemistry
- Organic Chemistry