Defining the major antibody epitopes on the human thyrotropin receptor in immunized mice: Evidence for intramolecular epitope spreading

H. Vlase, M. Nakashima, P. N. Graves, Y. Tomer, J. C. Morris, T. F. Davies

Research output: Contribution to journalArticle

54 Scopus citations


To evaluate the B cell response to the extracellular domain of the human TSH receptor (hTSHR-ecd), we used recombinant hTSHR-ecd to immunize BALB/c mice (group A) and CBA/J mice (groups B and C). Mice from groups A and B were boosted once, and mice from group C received three antigen boosts. All individual mice developed highly specific hTSHR-ecd antibodies (hTSHR-ecd-Ab), confirmed by Western blot analyses. The B cell epitopes recognized by these murine hTSHR-ecd-Ab were mapped by enzyme-linked immunoassays using 26 synthetic overlapping peptides spanning the entire mature hTSHR-ecd [amino acids (aa) 22-415], i.e. without the signal sequence. Although all BALB/c and CBA/J mice antisera recognized peptide 1 (aa 22-41), the hyperimmunized CBA/J mice (group C) demonstrated recognition of additional peptides (numbers 21-26) clustered toward the carboxyl-terminus of the hTSHR-ecd (aa 322-415). Furthermore, group C serum blocked the binding of [125I]bTSH to native porcine TSHR, whereas sera from groups A and B were inactive. We were also able to map the B cell epitopes of antisera from rabbits immunized repeatedly with hTSHR-ecd and found the same recognition pattern of peptide 1 and additional peptides clustered near the carboxyl-terminus of the hTSHR-ecd (aa 322-341 and 367-415). These rabbit antisera also inhibited the binding of [125I]bTSH to native porcine TSHR. These data provide a comprehensive B cell epitope-mapping study of induced hTSHR-ecd-Ab and demonstrate intramolecular spreading of the epitopes recognized. Although the N-terminal region was highly antigenic, repeated immunization induced hTSHR-ecd-Ab targeted to a region critical for TSH binding.

Original languageEnglish (US)
Pages (from-to)4415-4423
Number of pages9
Issue number10
Publication statusPublished - Oct 1995
Externally publishedYes


ASJC Scopus subject areas

  • Endocrinology

Cite this