TY - JOUR
T1 - Circumferential Strain Can Be Used to Detect Lipopolysaccharide-Induced Myocardial Dysfunction and Predict the Mortality of Severe Sepsis in Mice
AU - Chu, Ming
AU - Gao, Yao
AU - Zhou, Bin
AU - Wu, Bingruo
AU - Wang, Junhong
AU - DiXu,
N1 - Funding Information:
We thank Wendy Lui, PHD from the Departments of Genetics, Pediatrics and Medicine (Cardiology) of Albert Einstein College of Medicine of Yeshiva University for her critical revision the English language and grammar of the manuscript. This work was supported by grants from the National Natural Science Foundation of China to Dr. Wang Junhong (NSFC 81570328) and Prof. Xu Di (NSFC 81271589).
Publisher Copyright:
© 2016 Chu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/5
Y1 - 2016/5
N2 - Background Sepsis-induced myocardial dysfunction is a common and severe complication of septic shock. However, conventional echocardiography often fails to reveal myocardial depression in severe sepsis. Recently, strain measurements based on speckle tracking echocardiography (STE) have been used to evaluate cardiac function. Aims To investigate the role of STE in detecting lipopolysaccharide (LPS)-induced cardiac dysfunction, M-mode and 2-D echocardiography were used in LPS-treated mice. Methods The mice were treated with a 10mg/kg (n = 10), 20mg/kg (n = 10) or 25mg/kg LPS (n = 30) to induce cardiac dysfunction. Subsequently, the ejection fraction (EF) and fractional shortening (FS) were measured with standard M-mode tracings, whereas the circumferential (Scirc) and radial strain (Srad) were measured with STE. Serum biochemical and cardiac histopathological examinations were performed to assess sepsis-induced myocardial injury. Results20mg/kg LPS resulted in more deterioration, myocardial damage and cardiac contractile dysfunction based on serum biochemical and histological examinations. The mice that were subjected to 20mg/kg LPS exhibited reduced Scirc but no reduction in Srad, whereas on conventional echocardiography, the ejection fraction (EF) and fractional shortening (FS) were similar in the 10mg/kg and 20mg/kg groups. Moreover, Scirc was positively correlated with body temperature in the mice at 20 h after LPS injection (r = 0.746, p = 0.001), but no significant correlation was observed between Srad and body temperature (r = 0.356, p = 0.123). Moreover, the mice with high Scirc (-5.9% to -10.4%) exhibited reduced mortality following the administration of 25mg/kg LPS (p = 0.03) compared with the low-strain group (-2% to -5.9%). Conclusions Taken together, our findings indicate that circumferential strain is a specific and reliable indicator for evaluating LPS-induced cardiac dysfunction in mice.
AB - Background Sepsis-induced myocardial dysfunction is a common and severe complication of septic shock. However, conventional echocardiography often fails to reveal myocardial depression in severe sepsis. Recently, strain measurements based on speckle tracking echocardiography (STE) have been used to evaluate cardiac function. Aims To investigate the role of STE in detecting lipopolysaccharide (LPS)-induced cardiac dysfunction, M-mode and 2-D echocardiography were used in LPS-treated mice. Methods The mice were treated with a 10mg/kg (n = 10), 20mg/kg (n = 10) or 25mg/kg LPS (n = 30) to induce cardiac dysfunction. Subsequently, the ejection fraction (EF) and fractional shortening (FS) were measured with standard M-mode tracings, whereas the circumferential (Scirc) and radial strain (Srad) were measured with STE. Serum biochemical and cardiac histopathological examinations were performed to assess sepsis-induced myocardial injury. Results20mg/kg LPS resulted in more deterioration, myocardial damage and cardiac contractile dysfunction based on serum biochemical and histological examinations. The mice that were subjected to 20mg/kg LPS exhibited reduced Scirc but no reduction in Srad, whereas on conventional echocardiography, the ejection fraction (EF) and fractional shortening (FS) were similar in the 10mg/kg and 20mg/kg groups. Moreover, Scirc was positively correlated with body temperature in the mice at 20 h after LPS injection (r = 0.746, p = 0.001), but no significant correlation was observed between Srad and body temperature (r = 0.356, p = 0.123). Moreover, the mice with high Scirc (-5.9% to -10.4%) exhibited reduced mortality following the administration of 25mg/kg LPS (p = 0.03) compared with the low-strain group (-2% to -5.9%). Conclusions Taken together, our findings indicate that circumferential strain is a specific and reliable indicator for evaluating LPS-induced cardiac dysfunction in mice.
UR - http://www.scopus.com/inward/record.url?scp=84969802811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969802811&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0155346
DO - 10.1371/journal.pone.0155346
M3 - Article
C2 - 27177150
AN - SCOPUS:84969802811
SN - 1932-6203
VL - 11
JO - PLoS One
JF - PLoS One
IS - 5
M1 - e0155346
ER -