Binding of activated protein c to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses

Wayne W. Hancock, Shane T. Grey, Lena Hau, Enver Akalin, Carolyn Orthner, Mohamed H. Sayegh, Hatem H. Salem

Research output: Contribution to journalArticle

116 Citations (Scopus)

Abstract

Upon activation, mononuclear phagocytes (MØ) play key roles in the development of septic shock and multiple host immune responses, but details of the regulation of MØ activation are little understood. We recently showed that the physiologic anticoagulant molecule, activated protein C (APC), blocks responses of human blood MØ, alveolar MØ, or THP-1 cells induced by LPS, IFN-γ, or PMA, including TNF-α production and down-regulation of several LPS binding-related proteins. We now report a possible mechanism of action through inhibition of the rapid intracellular calcium signaling that occurs at the onset of MØ activation, and characterization of a specific MØ receptor for APC. Flow cytometry studies using Fluo-3 showed that MØ activation by Fc-receptor cross-linking or rIFN-γ caused a rapid increase in free intracellular calcium, a primary event in multiple signal transduction pathways, which was blocked by pretreatment with APC. Consistent with this, addition of APC inhibited PHA-induced T cell proliferation in a dose- and time-dependent manner. Peak suppression (>70%) required addition of APC within the first hour of 72 hr cocultures of MØ and lymphocytes, and proliferative responses were not restored by addition of IL-2 or TNF-γ. Biochemical studies showed that <sup>125</sup>I-labeled APC bound specifically to MØ in a time-dependent and saturable manner. Scatchard analysis indicated there were 180,690 binding sites for APC per cell, which were of high affinity (Kd value of 12.9 nM). Binding of <sup>125</sup>I-APC was doubled by activation of MØ with LPS, and bound APC was not displaced by the zymogen, protein C (PC), or by enzymatically inactive (diisopropyl fluorophosphate- or PPACK-treated) APC, indicating an absolute requirement for the active site of APC in its binding to MØ. APC binding was blocked by a polyclonal Ab to human PC/APC, but not by protein S, factor Va or Xa, or a polyclonal antithrombomodulin antibody. When <sup>125</sup>I-APC was crosslinked to its receptor, immunoprecipitated and analyzed by SDS-PAGE under reducing conditions, a covalent complex (110-115 kD) of <sup>125</sup>I-APC (62 kD) and its receptor was seen. In addition, a MØ membrane protein of 50-55 kD, as determined by SDS-PAGE, was affinity-purified using an APC-Affigel column, and confirmed by ligand binding. Taken together, our findings document the presence of a MØ surface receptor for APC, which appears distinct from a recently described endothelial receptor for PC and APC, and which may be involved in the inhibitory effects of APC on activation of human MØ, including MØ-dependent T cell proliferation.

Original languageEnglish (US)
Pages (from-to)1525-1532
Number of pages8
JournalTransplantation
Volume60
Issue number12
StatePublished - Dec 27 1995
Externally publishedYes

Fingerprint

Calcium Signaling
Phagocytes
Protein C
Monocytes
Carrier Proteins
fluorophosphate
Polyacrylamide Gel Electrophoresis
Factor Va
Cell Proliferation
T-Lymphocytes
Enzyme Precursors
Factor Xa
Fc Receptors

ASJC Scopus subject areas

  • Transplantation
  • Immunology

Cite this

Binding of activated protein c to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses. / Hancock, Wayne W.; Grey, Shane T.; Hau, Lena; Akalin, Enver; Orthner, Carolyn; Sayegh, Mohamed H.; Salem, Hatem H.

In: Transplantation, Vol. 60, No. 12, 27.12.1995, p. 1525-1532.

Research output: Contribution to journalArticle

Hancock, Wayne W. ; Grey, Shane T. ; Hau, Lena ; Akalin, Enver ; Orthner, Carolyn ; Sayegh, Mohamed H. ; Salem, Hatem H. / Binding of activated protein c to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses. In: Transplantation. 1995 ; Vol. 60, No. 12. pp. 1525-1532.
@article{c46ae42abd88455698fa5f729d1ed4e9,
title = "Binding of activated protein c to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses",
abstract = "Upon activation, mononuclear phagocytes (M{\O}) play key roles in the development of septic shock and multiple host immune responses, but details of the regulation of M{\O} activation are little understood. We recently showed that the physiologic anticoagulant molecule, activated protein C (APC), blocks responses of human blood M{\O}, alveolar M{\O}, or THP-1 cells induced by LPS, IFN-γ, or PMA, including TNF-α production and down-regulation of several LPS binding-related proteins. We now report a possible mechanism of action through inhibition of the rapid intracellular calcium signaling that occurs at the onset of M{\O} activation, and characterization of a specific M{\O} receptor for APC. Flow cytometry studies using Fluo-3 showed that M{\O} activation by Fc-receptor cross-linking or rIFN-γ caused a rapid increase in free intracellular calcium, a primary event in multiple signal transduction pathways, which was blocked by pretreatment with APC. Consistent with this, addition of APC inhibited PHA-induced T cell proliferation in a dose- and time-dependent manner. Peak suppression (>70{\%}) required addition of APC within the first hour of 72 hr cocultures of M{\O} and lymphocytes, and proliferative responses were not restored by addition of IL-2 or TNF-γ. Biochemical studies showed that 125I-labeled APC bound specifically to M{\O} in a time-dependent and saturable manner. Scatchard analysis indicated there were 180,690 binding sites for APC per cell, which were of high affinity (Kd value of 12.9 nM). Binding of 125I-APC was doubled by activation of M{\O} with LPS, and bound APC was not displaced by the zymogen, protein C (PC), or by enzymatically inactive (diisopropyl fluorophosphate- or PPACK-treated) APC, indicating an absolute requirement for the active site of APC in its binding to M{\O}. APC binding was blocked by a polyclonal Ab to human PC/APC, but not by protein S, factor Va or Xa, or a polyclonal antithrombomodulin antibody. When 125I-APC was crosslinked to its receptor, immunoprecipitated and analyzed by SDS-PAGE under reducing conditions, a covalent complex (110-115 kD) of 125I-APC (62 kD) and its receptor was seen. In addition, a M{\O} membrane protein of 50-55 kD, as determined by SDS-PAGE, was affinity-purified using an APC-Affigel column, and confirmed by ligand binding. Taken together, our findings document the presence of a M{\O} surface receptor for APC, which appears distinct from a recently described endothelial receptor for PC and APC, and which may be involved in the inhibitory effects of APC on activation of human M{\O}, including M{\O}-dependent T cell proliferation.",
author = "Hancock, {Wayne W.} and Grey, {Shane T.} and Lena Hau and Enver Akalin and Carolyn Orthner and Sayegh, {Mohamed H.} and Salem, {Hatem H.}",
year = "1995",
month = "12",
day = "27",
language = "English (US)",
volume = "60",
pages = "1525--1532",
journal = "Transplantation",
issn = "0041-1337",
publisher = "Lippincott Williams and Wilkins",
number = "12",

}

TY - JOUR

T1 - Binding of activated protein c to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses

AU - Hancock, Wayne W.

AU - Grey, Shane T.

AU - Hau, Lena

AU - Akalin, Enver

AU - Orthner, Carolyn

AU - Sayegh, Mohamed H.

AU - Salem, Hatem H.

PY - 1995/12/27

Y1 - 1995/12/27

N2 - Upon activation, mononuclear phagocytes (MØ) play key roles in the development of septic shock and multiple host immune responses, but details of the regulation of MØ activation are little understood. We recently showed that the physiologic anticoagulant molecule, activated protein C (APC), blocks responses of human blood MØ, alveolar MØ, or THP-1 cells induced by LPS, IFN-γ, or PMA, including TNF-α production and down-regulation of several LPS binding-related proteins. We now report a possible mechanism of action through inhibition of the rapid intracellular calcium signaling that occurs at the onset of MØ activation, and characterization of a specific MØ receptor for APC. Flow cytometry studies using Fluo-3 showed that MØ activation by Fc-receptor cross-linking or rIFN-γ caused a rapid increase in free intracellular calcium, a primary event in multiple signal transduction pathways, which was blocked by pretreatment with APC. Consistent with this, addition of APC inhibited PHA-induced T cell proliferation in a dose- and time-dependent manner. Peak suppression (>70%) required addition of APC within the first hour of 72 hr cocultures of MØ and lymphocytes, and proliferative responses were not restored by addition of IL-2 or TNF-γ. Biochemical studies showed that 125I-labeled APC bound specifically to MØ in a time-dependent and saturable manner. Scatchard analysis indicated there were 180,690 binding sites for APC per cell, which were of high affinity (Kd value of 12.9 nM). Binding of 125I-APC was doubled by activation of MØ with LPS, and bound APC was not displaced by the zymogen, protein C (PC), or by enzymatically inactive (diisopropyl fluorophosphate- or PPACK-treated) APC, indicating an absolute requirement for the active site of APC in its binding to MØ. APC binding was blocked by a polyclonal Ab to human PC/APC, but not by protein S, factor Va or Xa, or a polyclonal antithrombomodulin antibody. When 125I-APC was crosslinked to its receptor, immunoprecipitated and analyzed by SDS-PAGE under reducing conditions, a covalent complex (110-115 kD) of 125I-APC (62 kD) and its receptor was seen. In addition, a MØ membrane protein of 50-55 kD, as determined by SDS-PAGE, was affinity-purified using an APC-Affigel column, and confirmed by ligand binding. Taken together, our findings document the presence of a MØ surface receptor for APC, which appears distinct from a recently described endothelial receptor for PC and APC, and which may be involved in the inhibitory effects of APC on activation of human MØ, including MØ-dependent T cell proliferation.

AB - Upon activation, mononuclear phagocytes (MØ) play key roles in the development of septic shock and multiple host immune responses, but details of the regulation of MØ activation are little understood. We recently showed that the physiologic anticoagulant molecule, activated protein C (APC), blocks responses of human blood MØ, alveolar MØ, or THP-1 cells induced by LPS, IFN-γ, or PMA, including TNF-α production and down-regulation of several LPS binding-related proteins. We now report a possible mechanism of action through inhibition of the rapid intracellular calcium signaling that occurs at the onset of MØ activation, and characterization of a specific MØ receptor for APC. Flow cytometry studies using Fluo-3 showed that MØ activation by Fc-receptor cross-linking or rIFN-γ caused a rapid increase in free intracellular calcium, a primary event in multiple signal transduction pathways, which was blocked by pretreatment with APC. Consistent with this, addition of APC inhibited PHA-induced T cell proliferation in a dose- and time-dependent manner. Peak suppression (>70%) required addition of APC within the first hour of 72 hr cocultures of MØ and lymphocytes, and proliferative responses were not restored by addition of IL-2 or TNF-γ. Biochemical studies showed that 125I-labeled APC bound specifically to MØ in a time-dependent and saturable manner. Scatchard analysis indicated there were 180,690 binding sites for APC per cell, which were of high affinity (Kd value of 12.9 nM). Binding of 125I-APC was doubled by activation of MØ with LPS, and bound APC was not displaced by the zymogen, protein C (PC), or by enzymatically inactive (diisopropyl fluorophosphate- or PPACK-treated) APC, indicating an absolute requirement for the active site of APC in its binding to MØ. APC binding was blocked by a polyclonal Ab to human PC/APC, but not by protein S, factor Va or Xa, or a polyclonal antithrombomodulin antibody. When 125I-APC was crosslinked to its receptor, immunoprecipitated and analyzed by SDS-PAGE under reducing conditions, a covalent complex (110-115 kD) of 125I-APC (62 kD) and its receptor was seen. In addition, a MØ membrane protein of 50-55 kD, as determined by SDS-PAGE, was affinity-purified using an APC-Affigel column, and confirmed by ligand binding. Taken together, our findings document the presence of a MØ surface receptor for APC, which appears distinct from a recently described endothelial receptor for PC and APC, and which may be involved in the inhibitory effects of APC on activation of human MØ, including MØ-dependent T cell proliferation.

UR - http://www.scopus.com/inward/record.url?scp=0029626658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029626658&partnerID=8YFLogxK

M3 - Article

VL - 60

SP - 1525

EP - 1532

JO - Transplantation

JF - Transplantation

SN - 0041-1337

IS - 12

ER -