TY - GEN
T1 - Automatic anatomy recognition in post-tonsillectomy MR images of obese children with OSAS
AU - Tong, Yubing
AU - Udupa, Jayaram K.
AU - Odhner, Dewey
AU - Sin, Sanghun
AU - Arens, Raanan
N1 - Publisher Copyright:
© 2015 SPIE.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015
Y1 - 2015
N2 - Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques can be combined with machine learning strategies within the AAR recognition framework for good performance in recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for handling significantly deformed or missing organs, especially in neck MRI.
AB - Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques can be combined with machine learning strategies within the AAR recognition framework for good performance in recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for handling significantly deformed or missing organs, especially in neck MRI.
KW - Adenotonsillectomy
KW - Automatic anatomy recognition-AAR
KW - Missing organs detection
KW - Multi-object segmentation
UR - http://www.scopus.com/inward/record.url?scp=84948765564&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948765564&partnerID=8YFLogxK
U2 - 10.1117/12.2081912
DO - 10.1117/12.2081912
M3 - Conference contribution
AN - SCOPUS:84948765564
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2015
A2 - Hadjiiski, Lubomir M.
A2 - Tourassi, Georgia D.
PB - SPIE
T2 - SPIE Medical Imaging Symposium 2015: Computer-Aided Diagnosis
Y2 - 22 February 2015 through 25 February 2015
ER -