Antibodies which recognize the C-terminus of the inhibitory guanine-nucleotide-binding protein (Gi) demonstrate that opioid peptides and foetal-calf serum stimulate the high-affinity GTPase activity of two separate pertussis-toxin substrates.

F. R. McKenzie, E. C. Kelly, C. G. Unson, A. M. Spiegel, G. Milligan

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

We investigated the mechanisms of receptor-mediated stimulation of high-affinity GTPase activity in response to opioid peptides and to foetal-calf serum in membranes of the neuroblastoma X glioma hybrid cell line NG108-15. Increases in GTPase activity in response to both of these ligands was abolished by prior exposure of the cells to pertussis toxin. Pertussis toxin in the presence of [32P]NAD+ catalysed incorporation of radioactivity into a broad band of approx. 40 kDa in membranes prepared from untreated, but not from pertussis-toxin-pretreated, cells. Additivity studies indicated that the responses to opioid peptides and to foetal-calf serum were mediated by separate guanine-nucleotide-binding proteins (G-proteins). Whereas opioid peptides produced an inhibition of adenylate cyclase in membranes of untreated cells, foetal-calf serum did not. Affinity-purified antibodies which recognize the C-terminus of the inhibitory G-protein identified a 40 kDa polypeptide in membranes of NG108-15 cells. These antibodies attenuated opioid-stimulated high-affinity GTPase activity, but did not markedly affect the response to foetal-calf serum. We conclude that receptors for the opioid peptides function via the inhibitory G-protein (Gi), whereas foetal-calf serum activates a second pertussis-toxin-sensitive G-protein, which has a C-terminal sequence significantly different from that of Gi.

Original languageEnglish (US)
Pages (from-to)653-659
Number of pages7
JournalThe Biochemical journal
Volume249
Issue number3
DOIs
Publication statusPublished - Feb 1 1988
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this