An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening

Liming Hu, David Bell, Sameer Antani, Zhiyun Xue, Kai Yu, Matthew P. Horning, Noni Gachuhi, Benjamin Wilson, Mayoore S. Jaiswal, Brian Befano, L. Rodney Long, Rolando Herrero, Mark H. Einstein, Robert D. Burk, Maria Demarco, Julia C. Gage, Ana Cecilia Rodriguez, Nicolas Wentzensen, Mark Schiffman

Research output: Contribution to journalComment/debate

Original languageEnglish (US)
Pages (from-to)343-344
Number of pages2
JournalObstetrical and Gynecological Survey
Volume74
Issue number6
DOIs
StatePublished - Jun 1 2019

Fingerprint

Early Detection of Cancer
Uterine Cervical Neoplasms
Observational Studies
Learning

ASJC Scopus subject areas

  • Obstetrics and Gynecology

Cite this

An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. / Hu, Liming; Bell, David; Antani, Sameer; Xue, Zhiyun; Yu, Kai; Horning, Matthew P.; Gachuhi, Noni; Wilson, Benjamin; Jaiswal, Mayoore S.; Befano, Brian; Long, L. Rodney; Herrero, Rolando; Einstein, Mark H.; Burk, Robert D.; Demarco, Maria; Gage, Julia C.; Rodriguez, Ana Cecilia; Wentzensen, Nicolas; Schiffman, Mark.

In: Obstetrical and Gynecological Survey, Vol. 74, No. 6, 01.06.2019, p. 343-344.

Research output: Contribution to journalComment/debate

Hu, L, Bell, D, Antani, S, Xue, Z, Yu, K, Horning, MP, Gachuhi, N, Wilson, B, Jaiswal, MS, Befano, B, Long, LR, Herrero, R, Einstein, MH, Burk, RD, Demarco, M, Gage, JC, Rodriguez, AC, Wentzensen, N & Schiffman, M 2019, 'An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening', Obstetrical and Gynecological Survey, vol. 74, no. 6, pp. 343-344. https://doi.org/10.1097/OGX.0000000000000687
Hu, Liming ; Bell, David ; Antani, Sameer ; Xue, Zhiyun ; Yu, Kai ; Horning, Matthew P. ; Gachuhi, Noni ; Wilson, Benjamin ; Jaiswal, Mayoore S. ; Befano, Brian ; Long, L. Rodney ; Herrero, Rolando ; Einstein, Mark H. ; Burk, Robert D. ; Demarco, Maria ; Gage, Julia C. ; Rodriguez, Ana Cecilia ; Wentzensen, Nicolas ; Schiffman, Mark. / An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. In: Obstetrical and Gynecological Survey. 2019 ; Vol. 74, No. 6. pp. 343-344.
@article{00b7713e75d54d77ba0980fe95ae4f36,
title = "An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening",
author = "Liming Hu and David Bell and Sameer Antani and Zhiyun Xue and Kai Yu and Horning, {Matthew P.} and Noni Gachuhi and Benjamin Wilson and Jaiswal, {Mayoore S.} and Brian Befano and Long, {L. Rodney} and Rolando Herrero and Einstein, {Mark H.} and Burk, {Robert D.} and Maria Demarco and Gage, {Julia C.} and Rodriguez, {Ana Cecilia} and Nicolas Wentzensen and Mark Schiffman",
year = "2019",
month = "6",
day = "1",
doi = "10.1097/OGX.0000000000000687",
language = "English (US)",
volume = "74",
pages = "343--344",
journal = "Obstetrical and Gynecological Survey",
issn = "0029-7828",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening

AU - Hu, Liming

AU - Bell, David

AU - Antani, Sameer

AU - Xue, Zhiyun

AU - Yu, Kai

AU - Horning, Matthew P.

AU - Gachuhi, Noni

AU - Wilson, Benjamin

AU - Jaiswal, Mayoore S.

AU - Befano, Brian

AU - Long, L. Rodney

AU - Herrero, Rolando

AU - Einstein, Mark H.

AU - Burk, Robert D.

AU - Demarco, Maria

AU - Gage, Julia C.

AU - Rodriguez, Ana Cecilia

AU - Wentzensen, Nicolas

AU - Schiffman, Mark

PY - 2019/6/1

Y1 - 2019/6/1

UR - http://www.scopus.com/inward/record.url?scp=85067291425&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067291425&partnerID=8YFLogxK

U2 - 10.1097/OGX.0000000000000687

DO - 10.1097/OGX.0000000000000687

M3 - Comment/debate

AN - SCOPUS:85067291425

VL - 74

SP - 343

EP - 344

JO - Obstetrical and Gynecological Survey

JF - Obstetrical and Gynecological Survey

SN - 0029-7828

IS - 6

ER -