Towards solution of the RNA folding problem

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): RNA molecules often must fold into distinct three-dimensional structures to exert their biological function. These folded structures may be large or small, long-lived or transient, and/or stable or unstable in nature. The kinetics of RNA folding is characterized by multiple pathways, the population of intermediates and often (but not always) on- and/or off-pathway kinetically trapped species. Our approach to understanding how the RNA is folded is to determine which folding pathways are possible in vitro with the goal of determining the subset that occur in vivo. We computationally integrate local and global measures of folding into "structural-kinetic" models that characterize folding reactions from their earliest steps. Our development of high-throughput methods for the acquisition of time progress curves with millisecond time and single nucleotide spatial resolution allows general hypotheses to be tested against experimental data that is both deep and broad. The proposed studies of group I introns seek to establish quantitative relationships between RNA structure, stability and folding kinetics by critically comparing the folding of phylogenetically related RNA molecules and gentle systematic perturbation of tertiary contacts. The folding of a riboswitch whose structure is homologous to the catalytic core of group I intron is analyzed to determine if these different regulatory elements possess a common folding mechanism. We explore the effect on the observed emergent folding behavior solution variables such as temperature and ionic conditions that affect the microscopic environment of RNA in order to understand the relationships between the physical environment and folding environment. Lastly, we seek to understand how transcription affects RNA folding. PUBLIC HEALTH RELEVANCE: RNA is critical to the function of many cellular processes. Its correct folding is vital for the biological function of these important elements of the cell. However, the link between incorrect RNA folding and physiological malfunctions and pathologies is only started to emerge. We believe that the principles revealed by quantitative study of model systems such as the group I ribozymes will be directly applicable to RNA structures and protein-RNA assemblies linked to human pathologies.
StatusFinished
Effective start/end date5/1/092/28/10

Funding

  • National Institute of General Medical Sciences: $344,450.00

ASJC

  • Genetics
  • Molecular Biology
  • Biophysics
  • Structural Biology
  • Physical and Theoretical Chemistry

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.