Robust Predictor of Breast Cancer Risk

Project: Research project

Description

Summary Approximately 1.5 million women in the United States are at high-risk for developing breast cancer, based on inheritance of a germline mutation in a gene in the double strand-break (DSB) repair and cyclin-checkpoint pathways. Many are unaware of their genetic predispositions, because their family history is uninformative or unknown. Genetic testing is important for identifying mutations in these genes, but in ~75% of cases no mutation or a variant of uncertain significance will be identified, leading to ambiguous, unsatisfactory results. Identifying women at high risk prior to the onset of disease is an important challenge for personalized medicine, because disease can be prevented or treated at the earliest stage when cure is more likely. As more women are seeking genetic testing to identify their risk of breast cancer, accurate alternatives to sequencing are needed to predict the molecular phenotypic effects of mutations in genes in breast cancer-predisposing pathways. Risk classification scores based on flow variant assays (FVAs) are a new technology that can accurately identify women with heterozygous germline mutations in these pathways. In response to treatment with radiomimetic chemicals, FVAs identify decreased nuclear localization of BRCA1 and BRCA2 proteins and decreased phosphorylation of p53 in cells that bear mutations in these genes. FVAs are rapid, inexpensive and highly reproducible and can be performed on circulating and cultured human blood cells, thus lending themselves to becoming a Next Generation, non-sequencing, standalone test for assessing cancer risks. The goal of this STTR project is to develop a, simple, rapid and inexpensive clinical test that will accurately identify those at high risk for breast cancers. Phase I hypothesis. The standalone FVA test using whole blood samples will identify those at high-risk with 95% accuracy. Specific aim 1. Achieve risk classification score results for 99% of subjects with at least 95% accuracy on 180 subjects from well-characterized risk groups. Specific Aim 2. Achieve risk classification score results for all subjects from Aim 1 with comparable accuracy using an automated analysis protocol and newly created commercial kit. Having demonstrated analytical validity in Phase I, MMG will demonstrate clinical utility in Phase II by calculating and validating 10-year hazard ratios for breast cancer by age decade for 1,800 women followed by up to 20 years by the NCI's Breast Cancer Family Registry. This product will be sold to clinical laboratories in collaboration with a designated good manufacturing practices facility commercial partner, initially as a laboratory developed test and then as an FDA approved test. Several factors will drive this commercialization into the $1B market cancer risk assessment market: 1. low entry and performance costs, 2. greater accuracy than sequencing, 3. application to understanding risks for ovarian, pancreatic and prostate cancers, and 4. companion diagnostic for the new class of targeted chemotherapy, called ?PARP inhibitors.? The creation of simplified, commercial FVA kits will be a game changer for assessing cancer risks.
StatusFinished
Effective start/end date9/20/178/31/19

Funding

  • National Institutes of Health: $2,000.00
  • National Institutes of Health: $300,000.00

Fingerprint

Breast Neoplasms
Mutation
Germ-Line Mutation
Genetic Testing
Genes
BRCA2 Protein
BRCA1 Protein
Neoplasms
Precision Medicine
Cyclins
Genetic Predisposition to Disease
Pancreatic Neoplasms
Ovarian Neoplasms
Registries
Blood Cells
Prostatic Neoplasms
Phosphorylation
Technology
Costs and Cost Analysis
Drug Therapy

ASJC

  • Medicine(all)