Yeast AMP deaminase

Catalytic activity in Schizosaccharomyces pombe and chromosomal location in Saccharomyces cerevisiae

Paul Sollitti, David J. Merkler, Bernardo Estupiñán, Vern L. Schramm

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The AMP deaminase gene was mapped to chromosome XIII of Saccharomyces cerevisiae strain JM1901. The AMP deaminase gene is located near SUP5, GAL80, SUF7, and SUF22. The presence of AMP deaminase in the fission yeast Schizosaccharomyces pombe was examined by comparing DNA hybridization, protein immunoreactivity, and catalytic activity from S. cerevisiae, known to contain the protein, to S. pombe. DNA hybridization experiments using the cloned S. cerevisiae AMP deaminase gene failed to hybridize to the genomic DNA from S. pombe strain 972h-s. Protein extracts from S. pombe and S. cerevisiae were analyzed in parallel and exhibited comparable AMP deaminase activities. Analysis of reaction intermediates in cell extracts of S. pombe established that IMP is formed directly from AMP without intervening steps. The AMP deaminase of S. pombe was purified 1,100-fold to a specific catalytic activity of 67 μmol/min/mg of protein. Purified protein interacted weakly with polyclonal antibodies prepared against S. cerevisiae AMP deaminase. AMP deaminases from both S. cerevisiae and S. pombe were activated by ATP with micromolar activation constants, are inhibited by coformycin, and are specific for AMP when compared to other purine nucleosides and nucleotides. The results establish that S. pombe contains an AMP deaminase with catalytic properties similar to that from S. cerevisiae, even though the DNA sequences of the genes and the immunoreactivity of the protein from S. pombe differs considerably from the AMP deaminase of S. cerevisiae. Genetic analysis of the pathways of purine metabolism in S. pombe (Pourquié, J., and Heslot, H. (1971) Genet. Res. 18, 33-44) had indicated the absence of AMP deaminase. The presence of a regulated AMP deaminase in S. pombe supports the hypothesis that eukaryotes regulate adenine nucleotide pools by the activity of AMP deaminase.

Original languageEnglish (US)
Pages (from-to)4549-4555
Number of pages7
JournalJournal of Biological Chemistry
Volume268
Issue number6
StatePublished - Feb 25 1993

Fingerprint

AMP Deaminase
Schizosaccharomyces
Yeast
Saccharomyces cerevisiae
Catalyst activity
Yeasts
Schizosaccharomyces pombe Proteins
Genes
Adenosine Monophosphate
Proteins
Coformycin
DNA
Purine Nucleosides
Purine Nucleotides
Viverridae
Inosine Monophosphate
Reaction intermediates
Adenine Nucleotides
DNA sequences
Protein S

ASJC Scopus subject areas

  • Biochemistry

Cite this

Yeast AMP deaminase : Catalytic activity in Schizosaccharomyces pombe and chromosomal location in Saccharomyces cerevisiae. / Sollitti, Paul; Merkler, David J.; Estupiñán, Bernardo; Schramm, Vern L.

In: Journal of Biological Chemistry, Vol. 268, No. 6, 25.02.1993, p. 4549-4555.

Research output: Contribution to journalArticle

@article{35f4d1800ac745f6a5194c0e66c1f318,
title = "Yeast AMP deaminase: Catalytic activity in Schizosaccharomyces pombe and chromosomal location in Saccharomyces cerevisiae",
abstract = "The AMP deaminase gene was mapped to chromosome XIII of Saccharomyces cerevisiae strain JM1901. The AMP deaminase gene is located near SUP5, GAL80, SUF7, and SUF22. The presence of AMP deaminase in the fission yeast Schizosaccharomyces pombe was examined by comparing DNA hybridization, protein immunoreactivity, and catalytic activity from S. cerevisiae, known to contain the protein, to S. pombe. DNA hybridization experiments using the cloned S. cerevisiae AMP deaminase gene failed to hybridize to the genomic DNA from S. pombe strain 972h-s. Protein extracts from S. pombe and S. cerevisiae were analyzed in parallel and exhibited comparable AMP deaminase activities. Analysis of reaction intermediates in cell extracts of S. pombe established that IMP is formed directly from AMP without intervening steps. The AMP deaminase of S. pombe was purified 1,100-fold to a specific catalytic activity of 67 μmol/min/mg of protein. Purified protein interacted weakly with polyclonal antibodies prepared against S. cerevisiae AMP deaminase. AMP deaminases from both S. cerevisiae and S. pombe were activated by ATP with micromolar activation constants, are inhibited by coformycin, and are specific for AMP when compared to other purine nucleosides and nucleotides. The results establish that S. pombe contains an AMP deaminase with catalytic properties similar to that from S. cerevisiae, even though the DNA sequences of the genes and the immunoreactivity of the protein from S. pombe differs considerably from the AMP deaminase of S. cerevisiae. Genetic analysis of the pathways of purine metabolism in S. pombe (Pourqui{\'e}, J., and Heslot, H. (1971) Genet. Res. 18, 33-44) had indicated the absence of AMP deaminase. The presence of a regulated AMP deaminase in S. pombe supports the hypothesis that eukaryotes regulate adenine nucleotide pools by the activity of AMP deaminase.",
author = "Paul Sollitti and Merkler, {David J.} and Bernardo Estupi{\~n}{\'a}n and Schramm, {Vern L.}",
year = "1993",
month = "2",
day = "25",
language = "English (US)",
volume = "268",
pages = "4549--4555",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "6",

}

TY - JOUR

T1 - Yeast AMP deaminase

T2 - Catalytic activity in Schizosaccharomyces pombe and chromosomal location in Saccharomyces cerevisiae

AU - Sollitti, Paul

AU - Merkler, David J.

AU - Estupiñán, Bernardo

AU - Schramm, Vern L.

PY - 1993/2/25

Y1 - 1993/2/25

N2 - The AMP deaminase gene was mapped to chromosome XIII of Saccharomyces cerevisiae strain JM1901. The AMP deaminase gene is located near SUP5, GAL80, SUF7, and SUF22. The presence of AMP deaminase in the fission yeast Schizosaccharomyces pombe was examined by comparing DNA hybridization, protein immunoreactivity, and catalytic activity from S. cerevisiae, known to contain the protein, to S. pombe. DNA hybridization experiments using the cloned S. cerevisiae AMP deaminase gene failed to hybridize to the genomic DNA from S. pombe strain 972h-s. Protein extracts from S. pombe and S. cerevisiae were analyzed in parallel and exhibited comparable AMP deaminase activities. Analysis of reaction intermediates in cell extracts of S. pombe established that IMP is formed directly from AMP without intervening steps. The AMP deaminase of S. pombe was purified 1,100-fold to a specific catalytic activity of 67 μmol/min/mg of protein. Purified protein interacted weakly with polyclonal antibodies prepared against S. cerevisiae AMP deaminase. AMP deaminases from both S. cerevisiae and S. pombe were activated by ATP with micromolar activation constants, are inhibited by coformycin, and are specific for AMP when compared to other purine nucleosides and nucleotides. The results establish that S. pombe contains an AMP deaminase with catalytic properties similar to that from S. cerevisiae, even though the DNA sequences of the genes and the immunoreactivity of the protein from S. pombe differs considerably from the AMP deaminase of S. cerevisiae. Genetic analysis of the pathways of purine metabolism in S. pombe (Pourquié, J., and Heslot, H. (1971) Genet. Res. 18, 33-44) had indicated the absence of AMP deaminase. The presence of a regulated AMP deaminase in S. pombe supports the hypothesis that eukaryotes regulate adenine nucleotide pools by the activity of AMP deaminase.

AB - The AMP deaminase gene was mapped to chromosome XIII of Saccharomyces cerevisiae strain JM1901. The AMP deaminase gene is located near SUP5, GAL80, SUF7, and SUF22. The presence of AMP deaminase in the fission yeast Schizosaccharomyces pombe was examined by comparing DNA hybridization, protein immunoreactivity, and catalytic activity from S. cerevisiae, known to contain the protein, to S. pombe. DNA hybridization experiments using the cloned S. cerevisiae AMP deaminase gene failed to hybridize to the genomic DNA from S. pombe strain 972h-s. Protein extracts from S. pombe and S. cerevisiae were analyzed in parallel and exhibited comparable AMP deaminase activities. Analysis of reaction intermediates in cell extracts of S. pombe established that IMP is formed directly from AMP without intervening steps. The AMP deaminase of S. pombe was purified 1,100-fold to a specific catalytic activity of 67 μmol/min/mg of protein. Purified protein interacted weakly with polyclonal antibodies prepared against S. cerevisiae AMP deaminase. AMP deaminases from both S. cerevisiae and S. pombe were activated by ATP with micromolar activation constants, are inhibited by coformycin, and are specific for AMP when compared to other purine nucleosides and nucleotides. The results establish that S. pombe contains an AMP deaminase with catalytic properties similar to that from S. cerevisiae, even though the DNA sequences of the genes and the immunoreactivity of the protein from S. pombe differs considerably from the AMP deaminase of S. cerevisiae. Genetic analysis of the pathways of purine metabolism in S. pombe (Pourquié, J., and Heslot, H. (1971) Genet. Res. 18, 33-44) had indicated the absence of AMP deaminase. The presence of a regulated AMP deaminase in S. pombe supports the hypothesis that eukaryotes regulate adenine nucleotide pools by the activity of AMP deaminase.

UR - http://www.scopus.com/inward/record.url?scp=0027401909&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027401909&partnerID=8YFLogxK

M3 - Article

VL - 268

SP - 4549

EP - 4555

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 6

ER -