Whole body potassium as a biomarker for potassium uptake using a mouse model

Sana Tabbassum, Pinjing Cheng, Frank M. Yanko, Rekha Balachandran, Michael Aschner, Aaron B. Bowman, Linda H. Nie

Research output: Contribution to journalArticlepeer-review

Abstract

Potassium is known for its effect on modifiable chronic diseases like hypertension, cardiac disease, diabetes (type-2), and bone health. In this study, a new method, neutron generator based neutron activation analysis (NAA), was utilized to measure potassium (K) in mouse carcasses. A DD110 neutron generator based NAA assembly was used for irradiation.Thirty-two postmortem mice (n= 16 males and 16 females, average weight 22.02 ± 1.3 and 17.9 ± 1.1 g) were employed for this study. Soft-tissue equivalent mouse phantoms were prepared for the calibration. All mice were irradiated for 10 minutes, and the gamma spectrum with 42K was collected using a high efficiency, high purity germanium (HPGe) detector. A lead shielding assembly was designed and developed around the HPGe detector to obtain an improved detection limit. Each mouse sample was irradiated and measured twice to reduce uncertainty. The average potassium concentration was found to be significantly higher in males (2846 ± 525 μ g/ g) compared to females (2116.2 ± 432 μ g/ g). We also observed a significant correlation between potassium concentration and the weight of the mice. The detection limit for potassium quantification with the NAA system was 46 ppm. The radiation dose to the mouse was approximately 56 ± 1.6 mSv for 10-min irradiation. In conclusion, this method is suitable for estimating individual potassium concentration in small animals. The direct evaluation of total body potassium in small animals provides a new way to estimate potassium uptake in animal models. This method can be adapted later to quantify potassium in the human hand and small animals in vivo. When used in vivo, it is also expected to be a valuable tool for longitudinal assessment, kinetics, and health outcomes.

Original languageEnglish (US)
Article number6385
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Whole body potassium as a biomarker for potassium uptake using a mouse model'. Together they form a unique fingerprint.

Cite this