Two-dimensional solid-state array detectors: A technique for in vivo dose verification in a variable effective area

Kananan Utitsarn, Giordano Biasi, Nauljun Stansook, Ziyad A. Alrowaili, Marco Petasecca, Martin Carolan, Vladimir L. Perevertaylo, Wolfgang A. Tomé, Tomas Kron, Michael L.F. Lerch, Anatoly B. Rosenfeld

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Purpose: We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. Methods: We considered the detector prototype “MP512” (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2, produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2, and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). Results: In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. Conclusions: It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.

Original languageEnglish (US)
Pages (from-to)88-94
Number of pages7
JournalJournal of Applied Clinical Medical Physics
Issue number11
StatePublished - Nov 1 2019


  • 2D solid-state array detector
  • MP512
  • in vivo QA
  • transmission detector

ASJC Scopus subject areas

  • Radiation
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Two-dimensional solid-state array detectors: A technique for in vivo dose verification in a variable effective area'. Together they form a unique fingerprint.

Cite this