Thyroid cancer-indications and opportunities for positron emission tomography/computed tomography imaging

Tony Abraham, Heiko Schöder

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its incidence is increasing. Most differentiated thyroid cancers have an excellent prognosis if diagnosed early and treated appropriately. Aggressive histologic subtypes and variants carry a worse prognosis. During the last 2 decades positron emission tomography (PET) and PET/computed tomography (CT), mostly with fluorodeoxyglucose (FDG), has been used increasingly in patients with thyroid cancers. Currently, the most valuable role FDG-PET/CT exists in the work-up of patients with differentiated thyroid cancer status post thyroidectomy who present with increasing thyroglobulin levels and a negative 131I whole-body scan. FDG-PET/CT is also useful in the initial (post thyroidectomy) staging of high-risk patients with less differentiated (and thus less iodine-avid and clinically more aggressive) subtypes, such as tall cell variant and Hrthle cell carcinoma, but in particular poorly differentiated and anaplastic carcinoma. FDG-PET/CT may help in defining the extent of disease in some patients with medullary thyroid carcinoma and rising postoperative calcitonin levels. However, FDOPA has emerged as an alternate and more promising radiotracer in this setting. In aggressive cancers that are less amenable to treatment with 131iodine, FDG-PET/CT may help in radiotherapy planning, and in assessing the response to radiotherapy, embolization, or experimental systemic treatments. 124Iodine PET/CT may serve a role in obtaining lesional dosimetry for better and more rationale planning of treatment with 131iodine. Thyroid cancer is not a monolithic disease, and different stages and histologic entities require different approaches in imaging and individualized therapy.

Original languageEnglish (US)
Pages (from-to)121-138
Number of pages18
JournalSeminars in Nuclear Medicine
Volume41
Issue number2
DOIs
StatePublished - Mar 2011

Fingerprint

Thyroid Neoplasms
Thyroidectomy
Radiotherapy
Endocrine Gland Neoplasms
Carcinoma
Whole Body Imaging
Thyroglobulin
Calcitonin
Therapeutics
Iodine
Positron-Emission Tomography
Positron Emission Tomography Computed Tomography
Neoplasms
Incidence

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

Thyroid cancer-indications and opportunities for positron emission tomography/computed tomography imaging. / Abraham, Tony; Schöder, Heiko.

In: Seminars in Nuclear Medicine, Vol. 41, No. 2, 03.2011, p. 121-138.

Research output: Contribution to journalArticle

@article{dc8bde3670fd4fa1bfba959da0cdf34a,
title = "Thyroid cancer-indications and opportunities for positron emission tomography/computed tomography imaging",
abstract = "Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its incidence is increasing. Most differentiated thyroid cancers have an excellent prognosis if diagnosed early and treated appropriately. Aggressive histologic subtypes and variants carry a worse prognosis. During the last 2 decades positron emission tomography (PET) and PET/computed tomography (CT), mostly with fluorodeoxyglucose (FDG), has been used increasingly in patients with thyroid cancers. Currently, the most valuable role FDG-PET/CT exists in the work-up of patients with differentiated thyroid cancer status post thyroidectomy who present with increasing thyroglobulin levels and a negative 131I whole-body scan. FDG-PET/CT is also useful in the initial (post thyroidectomy) staging of high-risk patients with less differentiated (and thus less iodine-avid and clinically more aggressive) subtypes, such as tall cell variant and Hrthle cell carcinoma, but in particular poorly differentiated and anaplastic carcinoma. FDG-PET/CT may help in defining the extent of disease in some patients with medullary thyroid carcinoma and rising postoperative calcitonin levels. However, FDOPA has emerged as an alternate and more promising radiotracer in this setting. In aggressive cancers that are less amenable to treatment with 131iodine, FDG-PET/CT may help in radiotherapy planning, and in assessing the response to radiotherapy, embolization, or experimental systemic treatments. 124Iodine PET/CT may serve a role in obtaining lesional dosimetry for better and more rationale planning of treatment with 131iodine. Thyroid cancer is not a monolithic disease, and different stages and histologic entities require different approaches in imaging and individualized therapy.",
author = "Tony Abraham and Heiko Sch{\"o}der",
year = "2011",
month = "3",
doi = "10.1053/j.semnuclmed.2010.10.006",
language = "English (US)",
volume = "41",
pages = "121--138",
journal = "Seminars in Nuclear Medicine",
issn = "0001-2998",
publisher = "W.B. Saunders Ltd",
number = "2",

}

TY - JOUR

T1 - Thyroid cancer-indications and opportunities for positron emission tomography/computed tomography imaging

AU - Abraham, Tony

AU - Schöder, Heiko

PY - 2011/3

Y1 - 2011/3

N2 - Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its incidence is increasing. Most differentiated thyroid cancers have an excellent prognosis if diagnosed early and treated appropriately. Aggressive histologic subtypes and variants carry a worse prognosis. During the last 2 decades positron emission tomography (PET) and PET/computed tomography (CT), mostly with fluorodeoxyglucose (FDG), has been used increasingly in patients with thyroid cancers. Currently, the most valuable role FDG-PET/CT exists in the work-up of patients with differentiated thyroid cancer status post thyroidectomy who present with increasing thyroglobulin levels and a negative 131I whole-body scan. FDG-PET/CT is also useful in the initial (post thyroidectomy) staging of high-risk patients with less differentiated (and thus less iodine-avid and clinically more aggressive) subtypes, such as tall cell variant and Hrthle cell carcinoma, but in particular poorly differentiated and anaplastic carcinoma. FDG-PET/CT may help in defining the extent of disease in some patients with medullary thyroid carcinoma and rising postoperative calcitonin levels. However, FDOPA has emerged as an alternate and more promising radiotracer in this setting. In aggressive cancers that are less amenable to treatment with 131iodine, FDG-PET/CT may help in radiotherapy planning, and in assessing the response to radiotherapy, embolization, or experimental systemic treatments. 124Iodine PET/CT may serve a role in obtaining lesional dosimetry for better and more rationale planning of treatment with 131iodine. Thyroid cancer is not a monolithic disease, and different stages and histologic entities require different approaches in imaging and individualized therapy.

AB - Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its incidence is increasing. Most differentiated thyroid cancers have an excellent prognosis if diagnosed early and treated appropriately. Aggressive histologic subtypes and variants carry a worse prognosis. During the last 2 decades positron emission tomography (PET) and PET/computed tomography (CT), mostly with fluorodeoxyglucose (FDG), has been used increasingly in patients with thyroid cancers. Currently, the most valuable role FDG-PET/CT exists in the work-up of patients with differentiated thyroid cancer status post thyroidectomy who present with increasing thyroglobulin levels and a negative 131I whole-body scan. FDG-PET/CT is also useful in the initial (post thyroidectomy) staging of high-risk patients with less differentiated (and thus less iodine-avid and clinically more aggressive) subtypes, such as tall cell variant and Hrthle cell carcinoma, but in particular poorly differentiated and anaplastic carcinoma. FDG-PET/CT may help in defining the extent of disease in some patients with medullary thyroid carcinoma and rising postoperative calcitonin levels. However, FDOPA has emerged as an alternate and more promising radiotracer in this setting. In aggressive cancers that are less amenable to treatment with 131iodine, FDG-PET/CT may help in radiotherapy planning, and in assessing the response to radiotherapy, embolization, or experimental systemic treatments. 124Iodine PET/CT may serve a role in obtaining lesional dosimetry for better and more rationale planning of treatment with 131iodine. Thyroid cancer is not a monolithic disease, and different stages and histologic entities require different approaches in imaging and individualized therapy.

UR - http://www.scopus.com/inward/record.url?scp=79251482826&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79251482826&partnerID=8YFLogxK

U2 - 10.1053/j.semnuclmed.2010.10.006

DO - 10.1053/j.semnuclmed.2010.10.006

M3 - Article

C2 - 21272686

AN - SCOPUS:79251482826

VL - 41

SP - 121

EP - 138

JO - Seminars in Nuclear Medicine

JF - Seminars in Nuclear Medicine

SN - 0001-2998

IS - 2

ER -