Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins α5β1 and αvβ3

Kylie A. Hotchkiss, Anthony W. Ashton, Edward L. Schwartz

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

Thymidine phosphorylase is an angiogenic factor that is frequently overexpressed in solid tumors, in rheumatoid arthritis, and in response to inflammatory cytokines. Our previous studies showed that cells expressing thymidine phosphorylase stimulated endothelial cell migration in vitro. This was a consequence of the intracellular metabolism of thymidine by thymidine phosphorylase and subsequent extracellular release of 2-deoxyribose. The mechanisms by which 2-deoxyribose might mediate thymidine phosphorylase-induced cell migration in vitro, however, are obscure. Here we show that both thymidine phosphorylase and 2-deoxyribose stimulated the formation of focal adhesions and the tyrosine 397 phosphorylation of focal adhesion kinase in human umbilical vein endothelial cells. Although similar actions occurred upon treatment with the angiogenic factor vascular endothelial growth factor (VEGF), thymidine phosphorylase differed from VEGF in that its effect on endothelial cell migration was blocked by antibodies to either integrin α5β1 or αvβ3, whereas VEGF-induced endothelial cell migration was only blocked by the αvβ3 antibody. Further, thymidine phosphorylase and 2-deoxyribose, but not VEGF, increased the association of both focal adhesion kinase and the focal adhesion-associated protein vinculin with integrin α5β1 and, in intact cells, increased the co-localization of focal adhesion kinase with α5β1. Thymidine phosphorylase and 2-deoxyribose-induced focal adhesion kinase phosphorylation was blocked by the antibodies to α5β1 and αvβ3, directly linking the migration and signaling components of thymidine phosphorylase and 2-deoxyribose action. Cell surface expression of α5β1 was also increased by thymidine phosphorylase and 2-deoxyribose. These experiments are the first to demonstrate a direct effect of thymidine phosphorylase and 2-deoxyribose on signaling pathways associated with endothelial cell migration.

Original languageEnglish (US)
Pages (from-to)19272-19279
Number of pages8
JournalJournal of Biological Chemistry
Volume278
Issue number21
DOIs
StatePublished - May 23 2003

Fingerprint

Thymidine Phosphorylase
Deoxyribose
Endothelial cells
Integrins
Cell Movement
Endothelial Cells
Chemical activation
Focal Adhesion Protein-Tyrosine Kinases
Vascular Endothelial Growth Factor A
Phosphorylation
Focal Adhesions
Angiogenesis Inducing Agents
Antibodies
Adhesion
Vinculin
Human Umbilical Vein Endothelial Cells
Metabolism
Thymidine
Tyrosine
Tumors

ASJC Scopus subject areas

  • Biochemistry

Cite this

Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins α5β1 and αvβ3. / Hotchkiss, Kylie A.; Ashton, Anthony W.; Schwartz, Edward L.

In: Journal of Biological Chemistry, Vol. 278, No. 21, 23.05.2003, p. 19272-19279.

Research output: Contribution to journalArticle

@article{b9f080608f184ccea9fb9025849794f0,
title = "Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins α5β1 and αvβ3",
abstract = "Thymidine phosphorylase is an angiogenic factor that is frequently overexpressed in solid tumors, in rheumatoid arthritis, and in response to inflammatory cytokines. Our previous studies showed that cells expressing thymidine phosphorylase stimulated endothelial cell migration in vitro. This was a consequence of the intracellular metabolism of thymidine by thymidine phosphorylase and subsequent extracellular release of 2-deoxyribose. The mechanisms by which 2-deoxyribose might mediate thymidine phosphorylase-induced cell migration in vitro, however, are obscure. Here we show that both thymidine phosphorylase and 2-deoxyribose stimulated the formation of focal adhesions and the tyrosine 397 phosphorylation of focal adhesion kinase in human umbilical vein endothelial cells. Although similar actions occurred upon treatment with the angiogenic factor vascular endothelial growth factor (VEGF), thymidine phosphorylase differed from VEGF in that its effect on endothelial cell migration was blocked by antibodies to either integrin α5β1 or αvβ3, whereas VEGF-induced endothelial cell migration was only blocked by the αvβ3 antibody. Further, thymidine phosphorylase and 2-deoxyribose, but not VEGF, increased the association of both focal adhesion kinase and the focal adhesion-associated protein vinculin with integrin α5β1 and, in intact cells, increased the co-localization of focal adhesion kinase with α5β1. Thymidine phosphorylase and 2-deoxyribose-induced focal adhesion kinase phosphorylation was blocked by the antibodies to α5β1 and αvβ3, directly linking the migration and signaling components of thymidine phosphorylase and 2-deoxyribose action. Cell surface expression of α5β1 was also increased by thymidine phosphorylase and 2-deoxyribose. These experiments are the first to demonstrate a direct effect of thymidine phosphorylase and 2-deoxyribose on signaling pathways associated with endothelial cell migration.",
author = "Hotchkiss, {Kylie A.} and Ashton, {Anthony W.} and Schwartz, {Edward L.}",
year = "2003",
month = "5",
day = "23",
doi = "10.1074/jbc.M212670200",
language = "English (US)",
volume = "278",
pages = "19272--19279",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "21",

}

TY - JOUR

T1 - Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins α5β1 and αvβ3

AU - Hotchkiss, Kylie A.

AU - Ashton, Anthony W.

AU - Schwartz, Edward L.

PY - 2003/5/23

Y1 - 2003/5/23

N2 - Thymidine phosphorylase is an angiogenic factor that is frequently overexpressed in solid tumors, in rheumatoid arthritis, and in response to inflammatory cytokines. Our previous studies showed that cells expressing thymidine phosphorylase stimulated endothelial cell migration in vitro. This was a consequence of the intracellular metabolism of thymidine by thymidine phosphorylase and subsequent extracellular release of 2-deoxyribose. The mechanisms by which 2-deoxyribose might mediate thymidine phosphorylase-induced cell migration in vitro, however, are obscure. Here we show that both thymidine phosphorylase and 2-deoxyribose stimulated the formation of focal adhesions and the tyrosine 397 phosphorylation of focal adhesion kinase in human umbilical vein endothelial cells. Although similar actions occurred upon treatment with the angiogenic factor vascular endothelial growth factor (VEGF), thymidine phosphorylase differed from VEGF in that its effect on endothelial cell migration was blocked by antibodies to either integrin α5β1 or αvβ3, whereas VEGF-induced endothelial cell migration was only blocked by the αvβ3 antibody. Further, thymidine phosphorylase and 2-deoxyribose, but not VEGF, increased the association of both focal adhesion kinase and the focal adhesion-associated protein vinculin with integrin α5β1 and, in intact cells, increased the co-localization of focal adhesion kinase with α5β1. Thymidine phosphorylase and 2-deoxyribose-induced focal adhesion kinase phosphorylation was blocked by the antibodies to α5β1 and αvβ3, directly linking the migration and signaling components of thymidine phosphorylase and 2-deoxyribose action. Cell surface expression of α5β1 was also increased by thymidine phosphorylase and 2-deoxyribose. These experiments are the first to demonstrate a direct effect of thymidine phosphorylase and 2-deoxyribose on signaling pathways associated with endothelial cell migration.

AB - Thymidine phosphorylase is an angiogenic factor that is frequently overexpressed in solid tumors, in rheumatoid arthritis, and in response to inflammatory cytokines. Our previous studies showed that cells expressing thymidine phosphorylase stimulated endothelial cell migration in vitro. This was a consequence of the intracellular metabolism of thymidine by thymidine phosphorylase and subsequent extracellular release of 2-deoxyribose. The mechanisms by which 2-deoxyribose might mediate thymidine phosphorylase-induced cell migration in vitro, however, are obscure. Here we show that both thymidine phosphorylase and 2-deoxyribose stimulated the formation of focal adhesions and the tyrosine 397 phosphorylation of focal adhesion kinase in human umbilical vein endothelial cells. Although similar actions occurred upon treatment with the angiogenic factor vascular endothelial growth factor (VEGF), thymidine phosphorylase differed from VEGF in that its effect on endothelial cell migration was blocked by antibodies to either integrin α5β1 or αvβ3, whereas VEGF-induced endothelial cell migration was only blocked by the αvβ3 antibody. Further, thymidine phosphorylase and 2-deoxyribose, but not VEGF, increased the association of both focal adhesion kinase and the focal adhesion-associated protein vinculin with integrin α5β1 and, in intact cells, increased the co-localization of focal adhesion kinase with α5β1. Thymidine phosphorylase and 2-deoxyribose-induced focal adhesion kinase phosphorylation was blocked by the antibodies to α5β1 and αvβ3, directly linking the migration and signaling components of thymidine phosphorylase and 2-deoxyribose action. Cell surface expression of α5β1 was also increased by thymidine phosphorylase and 2-deoxyribose. These experiments are the first to demonstrate a direct effect of thymidine phosphorylase and 2-deoxyribose on signaling pathways associated with endothelial cell migration.

UR - http://www.scopus.com/inward/record.url?scp=0038143237&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038143237&partnerID=8YFLogxK

U2 - 10.1074/jbc.M212670200

DO - 10.1074/jbc.M212670200

M3 - Article

C2 - 12639965

AN - SCOPUS:0038143237

VL - 278

SP - 19272

EP - 19279

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 21

ER -