The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function

Marianthi Kiparaki, Chaitali Khan, Virginia Folgado-Marco, Jacky Chuen, Panagiotis Moulos, Nicholas E. Baker

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that  regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses, and is the key instigator of cell competition.

Original languageEnglish (US)
Article numbere71705
JournaleLife
Volume11
DOIs
StatePublished - Feb 2022

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function'. Together they form a unique fingerprint.

Cite this