The ISWI ATPase Snf2h is required for early mouse development

Tomas Stopka, Arthur I. Skoultchi

Research output: Contribution to journalArticle

126 Citations (Scopus)

Abstract

Chromatin assembly and remodeling complexes alter histone-DNA interactions by using the energy of ATP hydrolysis catalyzed by nucleosome-dependent ATPase subunits. Several classes of ATP-dependent chromatin remodeling complexes exist, including the ISWI family. ISWI complexes disrupt histone-DNA interactions in vitro by facilitating nucleosome sliding. Snf2h is a widely expressed ISWI ATPase. We investigated the role of the Snf2h gene in mammalian development by generating a null mutation in mice. Snf2h heterozygous mutant mice are born at the expected frequency and appear normal. Snf2h-/- embryos die during the periimplantation stage. Blastocyst outgrowth experiments indicate that loss of Snf2h results in growth arrest and cell death of both the trophectoderm and inner cell mass. To investigate the effect of decreased Snf2h levels in adult cells, we performed antisense inhibition of Snf2h in human hematopoietic progenitors. Reducing Snf2h levels inhibited CD34+ progenitors from undergoing cytokine-induced erythropoiesis in vitro. Our results indicate that Snf2h is required for proliferation of early blastocyst-derived stem cells and adult human hematopoietic progenitors. Cells lacking Snf2h are thus prevented from further embryonic development and differentiation.

Original languageEnglish (US)
Pages (from-to)14097-14102
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume100
Issue numberSUPPL. 2
DOIs
StatePublished - Nov 25 2003

Fingerprint

Chromatin Assembly and Disassembly
Adenosine Triphosphatases
Nucleosomes
Blastocyst
Histones
Adenosine Triphosphate
Adult Stem Cells
Erythropoiesis
DNA
Embryonic Development
Hydrolysis
Cell Death
Embryonic Structures
Cytokines
Mutation
Growth
Genes
In Vitro Techniques

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

The ISWI ATPase Snf2h is required for early mouse development. / Stopka, Tomas; Skoultchi, Arthur I.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. SUPPL. 2, 25.11.2003, p. 14097-14102.

Research output: Contribution to journalArticle

@article{66a8b6951fa64ec0a2b1c9729b783c3e,
title = "The ISWI ATPase Snf2h is required for early mouse development",
abstract = "Chromatin assembly and remodeling complexes alter histone-DNA interactions by using the energy of ATP hydrolysis catalyzed by nucleosome-dependent ATPase subunits. Several classes of ATP-dependent chromatin remodeling complexes exist, including the ISWI family. ISWI complexes disrupt histone-DNA interactions in vitro by facilitating nucleosome sliding. Snf2h is a widely expressed ISWI ATPase. We investigated the role of the Snf2h gene in mammalian development by generating a null mutation in mice. Snf2h heterozygous mutant mice are born at the expected frequency and appear normal. Snf2h-/- embryos die during the periimplantation stage. Blastocyst outgrowth experiments indicate that loss of Snf2h results in growth arrest and cell death of both the trophectoderm and inner cell mass. To investigate the effect of decreased Snf2h levels in adult cells, we performed antisense inhibition of Snf2h in human hematopoietic progenitors. Reducing Snf2h levels inhibited CD34+ progenitors from undergoing cytokine-induced erythropoiesis in vitro. Our results indicate that Snf2h is required for proliferation of early blastocyst-derived stem cells and adult human hematopoietic progenitors. Cells lacking Snf2h are thus prevented from further embryonic development and differentiation.",
author = "Tomas Stopka and Skoultchi, {Arthur I.}",
year = "2003",
month = "11",
day = "25",
doi = "10.1073/pnas.2336105100",
language = "English (US)",
volume = "100",
pages = "14097--14102",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "SUPPL. 2",

}

TY - JOUR

T1 - The ISWI ATPase Snf2h is required for early mouse development

AU - Stopka, Tomas

AU - Skoultchi, Arthur I.

PY - 2003/11/25

Y1 - 2003/11/25

N2 - Chromatin assembly and remodeling complexes alter histone-DNA interactions by using the energy of ATP hydrolysis catalyzed by nucleosome-dependent ATPase subunits. Several classes of ATP-dependent chromatin remodeling complexes exist, including the ISWI family. ISWI complexes disrupt histone-DNA interactions in vitro by facilitating nucleosome sliding. Snf2h is a widely expressed ISWI ATPase. We investigated the role of the Snf2h gene in mammalian development by generating a null mutation in mice. Snf2h heterozygous mutant mice are born at the expected frequency and appear normal. Snf2h-/- embryos die during the periimplantation stage. Blastocyst outgrowth experiments indicate that loss of Snf2h results in growth arrest and cell death of both the trophectoderm and inner cell mass. To investigate the effect of decreased Snf2h levels in adult cells, we performed antisense inhibition of Snf2h in human hematopoietic progenitors. Reducing Snf2h levels inhibited CD34+ progenitors from undergoing cytokine-induced erythropoiesis in vitro. Our results indicate that Snf2h is required for proliferation of early blastocyst-derived stem cells and adult human hematopoietic progenitors. Cells lacking Snf2h are thus prevented from further embryonic development and differentiation.

AB - Chromatin assembly and remodeling complexes alter histone-DNA interactions by using the energy of ATP hydrolysis catalyzed by nucleosome-dependent ATPase subunits. Several classes of ATP-dependent chromatin remodeling complexes exist, including the ISWI family. ISWI complexes disrupt histone-DNA interactions in vitro by facilitating nucleosome sliding. Snf2h is a widely expressed ISWI ATPase. We investigated the role of the Snf2h gene in mammalian development by generating a null mutation in mice. Snf2h heterozygous mutant mice are born at the expected frequency and appear normal. Snf2h-/- embryos die during the periimplantation stage. Blastocyst outgrowth experiments indicate that loss of Snf2h results in growth arrest and cell death of both the trophectoderm and inner cell mass. To investigate the effect of decreased Snf2h levels in adult cells, we performed antisense inhibition of Snf2h in human hematopoietic progenitors. Reducing Snf2h levels inhibited CD34+ progenitors from undergoing cytokine-induced erythropoiesis in vitro. Our results indicate that Snf2h is required for proliferation of early blastocyst-derived stem cells and adult human hematopoietic progenitors. Cells lacking Snf2h are thus prevented from further embryonic development and differentiation.

UR - http://www.scopus.com/inward/record.url?scp=0344198601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344198601&partnerID=8YFLogxK

U2 - 10.1073/pnas.2336105100

DO - 10.1073/pnas.2336105100

M3 - Article

VL - 100

SP - 14097

EP - 14102

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - SUPPL. 2

ER -