The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains

Robert Tamayev, Dawang Zhou, Luciano D'Adamio

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Background. Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known. Results. Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues. Conclusion. Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.

Original languageEnglish (US)
Article number28
JournalMolecular Neurodegeneration
Volume4
Issue number1
DOIs
StatePublished - 2009

Fingerprint

Amyloid beta-Protein Precursor
Phosphorylation
Amyloid
Biological Phenomena
Proteins
Aptitude
src Homology Domains
Protein Transport
Phosphatidylinositols
Protein-Tyrosine Kinases
Signal Transduction
Alzheimer Disease
Brain
Enzymes

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Clinical Neurology
  • Molecular Biology

Cite this

The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains. / Tamayev, Robert; Zhou, Dawang; D'Adamio, Luciano.

In: Molecular Neurodegeneration, Vol. 4, No. 1, 28, 2009.

Research output: Contribution to journalArticle

@article{bb782e5fb8bd4089853feb7fc24a5fd5,
title = "The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains",
abstract = "Background. Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known. Results. Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues. Conclusion. Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.",
author = "Robert Tamayev and Dawang Zhou and Luciano D'Adamio",
year = "2009",
doi = "10.1186/1750-1326-4-28",
language = "English (US)",
volume = "4",
journal = "Molecular Neurodegeneration",
issn = "1750-1326",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains

AU - Tamayev, Robert

AU - Zhou, Dawang

AU - D'Adamio, Luciano

PY - 2009

Y1 - 2009

N2 - Background. Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known. Results. Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues. Conclusion. Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.

AB - Background. Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known. Results. Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues. Conclusion. Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.

UR - http://www.scopus.com/inward/record.url?scp=69049118186&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=69049118186&partnerID=8YFLogxK

U2 - 10.1186/1750-1326-4-28

DO - 10.1186/1750-1326-4-28

M3 - Article

VL - 4

JO - Molecular Neurodegeneration

JF - Molecular Neurodegeneration

SN - 1750-1326

IS - 1

M1 - 28

ER -