The evolution of interference: Reduction of recombination among three loci

David B. Goldstein, Aviv Bergman, Marcus W. Feldman

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Crossover events along chromosomes do not occur independently, but influence the probably of other nearby events. The most common interaction between nearby crossover events is inhibitory: a crossover event tends to reduce the probability of other such events nearby, and this is called positive interference. A crossover event may increase the probability of events nearby, and this rare phenomenon is called negative interference. In this paper, we use numerical methods to investigate how interference among three loci would evolve if it were under the genetic control of a fourth, selectively neutral locus. We first discuss the effect of interference on the overall rate of recombination among the three loci, and then show that, under a variety of conditions, interference evolves in the same way as would be predicted based upon its effect on the overall rate of recombination. That is, the overall rate evolves in the same direction as would the rate at a locus that controls recombinalion between two loci directly. We then check for the existence of viability-analogous Hardy-Weinberg equilibria in the four-locus model of interference modification.

Original languageEnglish (US)
Pages (from-to)246-259
Number of pages14
JournalTheoretical Population Biology
Volume44
Issue number2
DOIs
StatePublished - Oct 1993
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Cite this