The biosynthesis of methanobactin

Grace E. Kenney, Laura M.K. Dassama, Maria Eirini Pandelia, Anthony S. Gizzi, Ryan J. Martinie, Peng Gao, Caroline J. DeHart, Luis F. Schachner, Owen S. Skinner, Soo Y. Ro, Xiao Zhu, Monica Sadek, Paul M. Thomas, Steven C. Almo, J. Martin Bollinger, Carsten Krebs, Neil L. Kelleher, Amy C. Rosenzweig

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.

Original languageEnglish (US)
Pages (from-to)1411-1416
Number of pages6
JournalScience
Volume359
Issue number6382
DOIs
StatePublished - Mar 23 2018

Fingerprint

Copper
Iron
Thioamides
Metals
Oxazolone
Bacterial Genomes
Peptides
Post Translational Protein Processing
Biological Products
Homeostasis
Electrons
Oxygen
Ligands
methanobactin
Enzymes
Proteins

ASJC Scopus subject areas

  • General

Cite this

Kenney, G. E., Dassama, L. M. K., Pandelia, M. E., Gizzi, A. S., Martinie, R. J., Gao, P., ... Rosenzweig, A. C. (2018). The biosynthesis of methanobactin. Science, 359(6382), 1411-1416. https://doi.org/10.1126/science.aap9437

The biosynthesis of methanobactin. / Kenney, Grace E.; Dassama, Laura M.K.; Pandelia, Maria Eirini; Gizzi, Anthony S.; Martinie, Ryan J.; Gao, Peng; DeHart, Caroline J.; Schachner, Luis F.; Skinner, Owen S.; Ro, Soo Y.; Zhu, Xiao; Sadek, Monica; Thomas, Paul M.; Almo, Steven C.; Bollinger, J. Martin; Krebs, Carsten; Kelleher, Neil L.; Rosenzweig, Amy C.

In: Science, Vol. 359, No. 6382, 23.03.2018, p. 1411-1416.

Research output: Contribution to journalArticle

Kenney, GE, Dassama, LMK, Pandelia, ME, Gizzi, AS, Martinie, RJ, Gao, P, DeHart, CJ, Schachner, LF, Skinner, OS, Ro, SY, Zhu, X, Sadek, M, Thomas, PM, Almo, SC, Bollinger, JM, Krebs, C, Kelleher, NL & Rosenzweig, AC 2018, 'The biosynthesis of methanobactin', Science, vol. 359, no. 6382, pp. 1411-1416. https://doi.org/10.1126/science.aap9437
Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P et al. The biosynthesis of methanobactin. Science. 2018 Mar 23;359(6382):1411-1416. https://doi.org/10.1126/science.aap9437
Kenney, Grace E. ; Dassama, Laura M.K. ; Pandelia, Maria Eirini ; Gizzi, Anthony S. ; Martinie, Ryan J. ; Gao, Peng ; DeHart, Caroline J. ; Schachner, Luis F. ; Skinner, Owen S. ; Ro, Soo Y. ; Zhu, Xiao ; Sadek, Monica ; Thomas, Paul M. ; Almo, Steven C. ; Bollinger, J. Martin ; Krebs, Carsten ; Kelleher, Neil L. ; Rosenzweig, Amy C. / The biosynthesis of methanobactin. In: Science. 2018 ; Vol. 359, No. 6382. pp. 1411-1416.
@article{b4c398742ce447edb462446d5219a2ab,
title = "The biosynthesis of methanobactin",
abstract = "Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.",
author = "Kenney, {Grace E.} and Dassama, {Laura M.K.} and Pandelia, {Maria Eirini} and Gizzi, {Anthony S.} and Martinie, {Ryan J.} and Peng Gao and DeHart, {Caroline J.} and Schachner, {Luis F.} and Skinner, {Owen S.} and Ro, {Soo Y.} and Xiao Zhu and Monica Sadek and Thomas, {Paul M.} and Almo, {Steven C.} and Bollinger, {J. Martin} and Carsten Krebs and Kelleher, {Neil L.} and Rosenzweig, {Amy C.}",
year = "2018",
month = "3",
day = "23",
doi = "10.1126/science.aap9437",
language = "English (US)",
volume = "359",
pages = "1411--1416",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "6382",

}

TY - JOUR

T1 - The biosynthesis of methanobactin

AU - Kenney, Grace E.

AU - Dassama, Laura M.K.

AU - Pandelia, Maria Eirini

AU - Gizzi, Anthony S.

AU - Martinie, Ryan J.

AU - Gao, Peng

AU - DeHart, Caroline J.

AU - Schachner, Luis F.

AU - Skinner, Owen S.

AU - Ro, Soo Y.

AU - Zhu, Xiao

AU - Sadek, Monica

AU - Thomas, Paul M.

AU - Almo, Steven C.

AU - Bollinger, J. Martin

AU - Krebs, Carsten

AU - Kelleher, Neil L.

AU - Rosenzweig, Amy C.

PY - 2018/3/23

Y1 - 2018/3/23

N2 - Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.

AB - Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.

UR - http://www.scopus.com/inward/record.url?scp=85044284160&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044284160&partnerID=8YFLogxK

U2 - 10.1126/science.aap9437

DO - 10.1126/science.aap9437

M3 - Article

C2 - 29567715

AN - SCOPUS:85044284160

VL - 359

SP - 1411

EP - 1416

JO - Science

JF - Science

SN - 0036-8075

IS - 6382

ER -