Abstract
The mechanism by which the bcl-2 oncogene exerts its anti-apoptotic and antioxidant action is unknown. We found that expression of bcl-2 in superoxide dismutase-deficient (SOD-) Escherichia coli resulted in increased transcription of the KatG catalase-peroxidase, a 13-fold increase in KatG activity and a 100-fold increase in resistance to hydrogen peroxide. In addition, mutation rate was increased 3-fold, and katG and oxyR, a transcriptional regulator of katG induction, were required for aerobic survival. These data indicate that Bcl-2 acts as a pro-oxidant in E. coli, i.e. Bcl-2 generates reactive oxygen intermediates. In support of a pro- oxidant mechanism in eukaryotic cells, we found a 73% increase in superoxide dismutase activity in a murine B-cell line overexpressing Bcl-2. Increases in reduced glutathione and in oxyradical damage to DNA, previously observed in other overexpressing cell lines, are additional evidence for a pro-oxidant mechanism. Thus, Bcl-2 does not appear to be an antioxidant. Instead, Bcl-2 appears to influence levels of reactive oxygen intermediates that induce endogenous cellular antioxidants. This activity of Bcl-2 may control entry into apoptosis.
Original language | English (US) |
---|---|
Pages (from-to) | 3487-3490 |
Number of pages | 4 |
Journal | Journal of Biological Chemistry |
Volume | 270 |
Issue number | 8 |
State | Published - Jan 1 1995 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology