Targeted Mutation of the MLN64 START Domain Causes only Modest Alterations in Cellular Sterol Metabolism

Tatsuro Kishida, Igor Kostetskii, Zhibing Zhang, Federico Martinez, Pei Liu, Steven U. Walkley, Nancy K. Dwyer, E. Joan Blanchette-Mackie, Glenn L. Radice, Jerome F. Strauss

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.

Original languageEnglish (US)
Pages (from-to)19276-19285
Number of pages10
JournalJournal of Biological Chemistry
Volume279
Issue number18
DOIs
StatePublished - Apr 30 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Targeted Mutation of the MLN64 START Domain Causes only Modest Alterations in Cellular Sterol Metabolism'. Together they form a unique fingerprint.

  • Cite this

    Kishida, T., Kostetskii, I., Zhang, Z., Martinez, F., Liu, P., Walkley, S. U., Dwyer, N. K., Blanchette-Mackie, E. J., Radice, G. L., & Strauss, J. F. (2004). Targeted Mutation of the MLN64 START Domain Causes only Modest Alterations in Cellular Sterol Metabolism. Journal of Biological Chemistry, 279(18), 19276-19285. https://doi.org/10.1074/jbc.M400717200