Systematic targeted integration to study Albumin gene control elements

Sanchari Bhattacharyya, Jianmin Tian, Eric E. Bouhassira, Joseph Locker

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

To study transcriptional regulation by distant enhancers, we devised a system of easilymodified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localizedby deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

Original languageEnglish (US)
Article numbere23234
JournalPLoS One
Volume6
Issue number8
DOIs
StatePublished - 2011

Fingerprint

albumins
Albumins
Plasmids
Genes
plasmids
Assays
promoter regions
assays
genes
Starvation
Transfection
Hepatocellular Carcinoma
Cell Cycle
hepatoma
transfection
Clone Cells
Chromosomes
starvation
cell cycle
clones

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Systematic targeted integration to study Albumin gene control elements. / Bhattacharyya, Sanchari; Tian, Jianmin; Bouhassira, Eric E.; Locker, Joseph.

In: PLoS One, Vol. 6, No. 8, e23234, 2011.

Research output: Contribution to journalArticle

@article{c1837e4899334bea990a0c460de26fe1,
title = "Systematic targeted integration to study Albumin gene control elements",
abstract = "To study transcriptional regulation by distant enhancers, we devised a system of easilymodified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localizedby deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.",
author = "Sanchari Bhattacharyya and Jianmin Tian and Bouhassira, {Eric E.} and Joseph Locker",
year = "2011",
doi = "10.1371/journal.pone.0023234",
language = "English (US)",
volume = "6",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Systematic targeted integration to study Albumin gene control elements

AU - Bhattacharyya, Sanchari

AU - Tian, Jianmin

AU - Bouhassira, Eric E.

AU - Locker, Joseph

PY - 2011

Y1 - 2011

N2 - To study transcriptional regulation by distant enhancers, we devised a system of easilymodified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localizedby deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

AB - To study transcriptional regulation by distant enhancers, we devised a system of easilymodified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localizedby deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb), we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

UR - http://www.scopus.com/inward/record.url?scp=80051611722&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051611722&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0023234

DO - 10.1371/journal.pone.0023234

M3 - Article

C2 - 21858039

AN - SCOPUS:80051611722

VL - 6

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

M1 - e23234

ER -