Synthesis of mevalonate-and fluorinated mevalonate prodrugs and their in vitro human plasma stability

Soosung Kang, Mizuki Watanabe, J. C. Jacobs, Masaya Yamaguchi, Samira Dahesh, Victor Nizet, Thomas S. Leyh, Richard B. Silverman

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The mevalonate pathway is essential for the production of many important molecules in lipid biosynthesis. Inhibition of this pathway is the mechanism of statin cholesterol-lowering drugs, as well as the target of drugs to treat osteoporosis, to combat parasites, and to inhibit tumor cell growth. Unlike the human mevalonate pathway, the bacterial pathway appears to be regulated by diphosphomevalonate (DPM). Enzymes in the mevalonate pathway act to produce isopentenyl diphosphate, the product of the DPM decarboxylase reaction, utilize phosphorylated (charged) intermediates, which are poorly bioavailable. It has been shown that fluorinated DPMs (6-fluoro-and 6,6,6-trifluoro-5-diphosphomevalonate) are excellent inhibitors of the bacterial pathway; however, highly charged DPM and analogs are not bioavailable. To increase cellular permeability of mevalonate analogs, we have synthesized various prodrugs of mevalonate and 6-fluoro-and 6,6,6-trifluoromevalonate that can be enzymatically transformed to the corresponding DPM or fluorinated DPM analogs by esterases or amidases. To probe the required stabilities as potentially bioavailable prodrugs, we measured the half-lives of esters, amides, carbonates, acetals, and ketal promoieties of mevalonate and the fluorinated mevalonate analogs in human blood plasma. Stability studies showed that the prodrugs are converted to the mevalonates in human plasma with a wide range of half-lives. These studies provide stability data for a variety of prodrug options having varying stabilities and should be very useful in the design of appropriate prodrugs of mevalonate and fluorinated mevalonates.

Original languageEnglish (US)
Pages (from-to)448-461
Number of pages14
JournalEuropean Journal of Medicinal Chemistry
Volume90
DOIs
StatePublished - Jan 27 2015

Keywords

  • 6 6 6-Trifluoromevalonate
  • 6-Fluoromevalonate
  • Mevalonate
  • Plasma stability
  • Prodrugs

ASJC Scopus subject areas

  • Pharmacology
  • Drug Discovery
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of mevalonate-and fluorinated mevalonate prodrugs and their in vitro human plasma stability'. Together they form a unique fingerprint.

Cite this