Synaptic organization of expansion motoneurons ofNavanax inermis

M. E. Spira, D. C. Spray, M. V.L. Bennett

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

The opisthobranch mollusc, Navanax, feeds by rapid pharyngeal expansion that sucks in prey followed by peristaltic swallowing that moves prey into the esophagus. Several identifiable neurons on the ventral surface of the buccal ganglia control radial musculature within the pharyngeal wall, contraction of which leads to pharyngeal expansion. These are considered expansion motoneurons because their axons run into the muscle and twitches and EMGs occur one for one with action potentials. The motoneurons are electronically coupled. Electronic PSPs, the components of spread associated with impulses, can summate with subthreshold DC depolarizations to yield synchronous impulses in coupled cells. During a train of responses the later electronic PSPs can be facilitated because of increase in amplitude and duration of the presynaptic impulses. Expansion motoneurons are synaptically connected by two apparently interneuronal pathways: a low threshold pathway activated by subthreshold depolarization of the two largest expansion motoneurons (the G-cells) that inhibits the entire population, and a high threshold pathway that is activated by a train of G-cell impulses and produces largely excitatory PSPs in the smaller expansion motoneurons and an EPSP-IPSP sequence in the G-cells. Coupling among expansion motoneurons can be abolished by chemical inhibitory synaptic inputs that are activated by electrical stimulation of the pharyngeal nerve or tactile stimulation of the pharyngeal wall. This uncoupling phenomenon can be explained by a simple equivalent circuit in which inhibitory synapses along the coupling pathway short circuit electronic spread. Uncoupling can outlast the evoking stimulus by several seconds. During uncoupling the smaller expansion motoneurones can fire independently while the G-cell is inhibited, and impulses still propagate from somata to the periphery. The expansion motoneuron population receives excitatory input from the mechanoreceptors in protractor muscles. Mechanical stimulation of the pharyngeal wall activates primary sensory neurons in the buccal ganglia that fire during excitation and during inhibition and uncoupling of expansion motoneurons.

Original languageEnglish (US)
Pages (from-to)241-269
Number of pages29
JournalBrain research
Volume195
Issue number2
DOIs
StatePublished - Aug 18 1980

Keywords

  • Navanax
  • electronic coupling
  • expansion motoneurons
  • feeding behavior
  • gastropod mollusc
  • uncoupling

ASJC Scopus subject areas

  • General Neuroscience
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Synaptic organization of expansion motoneurons ofNavanax inermis'. Together they form a unique fingerprint.

Cite this