Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1)

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C–L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward-and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.

Original languageEnglish (US)
Pages (from-to)C289-C296
JournalAmerican Journal of Physiology - Cell Physiology
Volume314
Issue number3
DOIs
StatePublished - Mar 1 2018

Fingerprint

Proton-Coupled Folate Transporter
Folic Acid
Disulfides
Pemetrexed
Cysteine
Biotinylation
Choroid Plexus
Fructose
Protein Binding
Oxidants
Small Intestine
Membranes
N-biotinylaminoethyl methanethiosulfonate

Keywords

  • Cysteine-mediated cross-linking
  • Folates
  • Homology modeling
  • Transmembrane domain
  • Transporter

ASJC Scopus subject areas

  • Physiology
  • Cell Biology

Cite this

@article{7c151119ed184df5b79aabc6c30cdfd1,
title = "Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1)",
abstract = "The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C–L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward-and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.",
keywords = "Cysteine-mediated cross-linking, Folates, Homology modeling, Transmembrane domain, Transporter",
author = "Srinivas Aluri and Rongbao Zhao and Andras Fiser and Goldman, {I. David}",
year = "2018",
month = "3",
day = "1",
doi = "10.1152/ajpcell.00215.2017",
language = "English (US)",
volume = "314",
pages = "C289--C296",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Substituted-cysteine accessibility and cross-linking identify an exofacial cleft in the 7th and 8th helices of the proton-coupled folate transporter (SLC46A1)

AU - Aluri, Srinivas

AU - Zhao, Rongbao

AU - Fiser, Andras

AU - Goldman, I. David

PY - 2018/3/1

Y1 - 2018/3/1

N2 - The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C–L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward-and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.

AB - The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C–L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward-and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.

KW - Cysteine-mediated cross-linking

KW - Folates

KW - Homology modeling

KW - Transmembrane domain

KW - Transporter

UR - http://www.scopus.com/inward/record.url?scp=85043570701&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043570701&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00215.2017

DO - 10.1152/ajpcell.00215.2017

M3 - Article

C2 - 29167151

AN - SCOPUS:85043570701

VL - 314

SP - C289-C296

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -