Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies

Elisa Ten Hacken, Rebecca Valentin, Fara Faye D. Regis, Jing Sun, Shanye Yin, Lillian Werner, Jing Deng, Michaela Gruber, Jessica Wong, Mei Zheng, Amy L. Gill, Michael Seiler, Peter Smith, Michael Thomas, Silvia Buonamici, Emanuela M. Ghia, Ekaterina Kim, Laura Z. Rassenti, Jan A. Burger, Thomas J. KippsMatthew L. Meyerson, Pavan Bachireddy, Lili Wang, Robin Reed, Donna Neuberg, Ruben D. Carrasco, Angela N. Brooks, Anthony Letai, Matthew S. Davids, Catherine J. Wu

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eμ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.

Original languageEnglish (US)
JournalJCI Insight
Volume3
Issue number19
DOIs
StatePublished - Oct 4 2018
Externally publishedYes

Keywords

  • Apoptosis inhibitors
  • Cancer
  • Hematology
  • Therapeutics
  • Transcription

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies'. Together they form a unique fingerprint.

Cite this