Single-Molecule Analysis of Dynein Processivity and Stepping Behavior

Samara L. Reck-Peterson, Ahmet Yildiz, Andrew P. Carter, Arne Gennerich, Nan Zhang, Ronald D. Vale

Research output: Contribution to journalArticle

420 Scopus citations

Abstract

Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.

Original languageEnglish (US)
Pages (from-to)335-348
Number of pages14
JournalCell
Volume126
Issue number2
DOIs
StatePublished - Jul 28 2006
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Single-Molecule Analysis of Dynein Processivity and Stepping Behavior'. Together they form a unique fingerprint.

  • Cite this

    Reck-Peterson, S. L., Yildiz, A., Carter, A. P., Gennerich, A., Zhang, N., & Vale, R. D. (2006). Single-Molecule Analysis of Dynein Processivity and Stepping Behavior. Cell, 126(2), 335-348. https://doi.org/10.1016/j.cell.2006.05.046