Shedding light on the role of the skin in vaccine-induced protection against the malaria sporozoite

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The most advanced vaccine against Plasmodium falciparum malaria, RTS,S/AS01, provides partial protection in infants and children living in areas of malaria endemicity. Further understanding its mechanisms of protection may allow the development of improved second-generation vaccines. The RTS,S/AS01 vaccine targets the sporozoites injected by mosquito vectors into the dermis which then travel into the blood stream to establish infection in the liver. Flores-Garcia et al. (Y. Flores-Garcia, G. Nasir, C. S. Hopp, C. Munoz, et al., mBio 9:e02194-18, 2018, https://doi.org/10.1128/mBio.02194-18) shed light on early protective responses occurring in the dermis in immunized animals. They demonstrated that immunization impairs sporozoite motility and entry into blood vessels. Furthermore, they established that challenge experiments performed using a dermal route conferred greater protection than intravenous challenge in immunized mice. Thus, the dermal challenge approach captures the additional protective mechanisms occurring in the dermis that reflect the natural physiology of infection. Those studies highlighted the fascinating biology of skin-stage sporozoites and provided additional insights into vaccine-induced protection.

Original languageEnglish (US)
Article numbere02555-18
JournalmBio
Volume9
Issue number6
DOIs
StatePublished - Nov 1 2018

Keywords

  • Antimalarial vaccine
  • Malaria immunity
  • Malaria pathogenesis

ASJC Scopus subject areas

  • Microbiology
  • Virology

Fingerprint

Dive into the research topics of 'Shedding light on the role of the skin in vaccine-induced protection against the malaria sporozoite'. Together they form a unique fingerprint.

Cite this