Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition: Solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)2

Evripidis Gavathiotis, Gary J. Sharman, Mark S. Searle

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

The solution structure of the dodecamer duplex d(CTTTTGCAAAAG) 2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract, MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3'-end towards the 5'-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 ) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.

Original languageEnglish (US)
Pages (from-to)728-735
Number of pages8
JournalNucleic Acids Research
Volume28
Issue number3
StatePublished - Feb 1 2000
Externally publishedYes

Fingerprint

Bisbenzimidazole
DNA
Pharmaceutical Preparations
Molecular Dynamics Simulation
Base Pairing

ASJC Scopus subject areas

  • Genetics

Cite this

@article{82e0fdcf4cbf415fa982b31073203cbe,
title = "Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition: Solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)2",
abstract = "The solution structure of the dodecamer duplex d(CTTTTGCAAAAG) 2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract, MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3'-end towards the 5'-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 ) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.",
author = "Evripidis Gavathiotis and Sharman, {Gary J.} and Searle, {Mark S.}",
year = "2000",
month = "2",
day = "1",
language = "English (US)",
volume = "28",
pages = "728--735",
journal = "Nucleic Acids Research",
issn = "0305-1048",
publisher = "Oxford University Press",
number = "3",

}

TY - JOUR

T1 - Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition

T2 - Solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)2

AU - Gavathiotis, Evripidis

AU - Sharman, Gary J.

AU - Searle, Mark S.

PY - 2000/2/1

Y1 - 2000/2/1

N2 - The solution structure of the dodecamer duplex d(CTTTTGCAAAAG) 2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract, MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3'-end towards the 5'-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 ) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.

AB - The solution structure of the dodecamer duplex d(CTTTTGCAAAAG) 2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract, MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3'-end towards the 5'-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 ) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.

UR - http://www.scopus.com/inward/record.url?scp=0034141784&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034141784&partnerID=8YFLogxK

M3 - Article

C2 - 10637324

AN - SCOPUS:0034141784

VL - 28

SP - 728

EP - 735

JO - Nucleic Acids Research

JF - Nucleic Acids Research

SN - 0305-1048

IS - 3

ER -